The annotation-validation (AV) model: rewarding contribution using retrospective agreement

Jon Chamberlain
{"title":"The annotation-validation (AV) model: rewarding contribution using retrospective agreement","authors":"Jon Chamberlain","doi":"10.1145/2594776.2594779","DOIUrl":null,"url":null,"abstract":"Evaluating contributions from users of systems with large datasets is a challenge across many domains, from task assessment in crowdsourcing to document relevance in information retrieval. This paper introduces a model for rewarding and evaluating users using retrospective validation, with only a small gold standard required to initiate the system. A simulation of the model shows that users are rewarded appropriately for high quality responses however analysis of data from an implementation of the model in a text annotation game indicates it may not be sophisticated enough to predict user performance.","PeriodicalId":170006,"journal":{"name":"GamifIR '14","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"GamifIR '14","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2594776.2594779","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Evaluating contributions from users of systems with large datasets is a challenge across many domains, from task assessment in crowdsourcing to document relevance in information retrieval. This paper introduces a model for rewarding and evaluating users using retrospective validation, with only a small gold standard required to initiate the system. A simulation of the model shows that users are rewarded appropriately for high quality responses however analysis of data from an implementation of the model in a text annotation game indicates it may not be sophisticated enough to predict user performance.
注释验证(AV)模型:使用回顾性协议奖励贡献
从众包中的任务评估到信息检索中的文档相关性,评估具有大型数据集的系统用户的贡献在许多领域都是一个挑战。本文介绍了一个使用回顾性验证来奖励和评估用户的模型,只需要一个小的金标准来启动系统。对该模型的模拟表明,用户会因为高质量的响应而得到适当的奖励,然而,对该模型在文本注释游戏中的实现数据的分析表明,它可能不够复杂,无法预测用户的表现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信