Scalable and precise taint analysis for Android

Wei Huang, Yao Dong, Ana L. Milanova, Julian T Dolby
{"title":"Scalable and precise taint analysis for Android","authors":"Wei Huang, Yao Dong, Ana L. Milanova, Julian T Dolby","doi":"10.1145/2771783.2771803","DOIUrl":null,"url":null,"abstract":"We propose a type-based taint analysis for Android. Concretely, we present DFlow, a context-sensitive information flow type system, and DroidInfer, the corresponding type inference analysis for detecting privacy leaks in Android apps. We present novel techniques for error reporting based on CFL-reachability, as well as novel techniques for handling of Android-specific features, including libraries, multiple entry points and callbacks, and inter-component communication. Empirical results show that our approach is scalable and precise. DroidInfer scales well in terms of time and memory and has false-positive rate of 15.7%. It detects privacy leaks in apps from the Google Play Store and in known malware.","PeriodicalId":264859,"journal":{"name":"Proceedings of the 2015 International Symposium on Software Testing and Analysis","volume":"79 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"97","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2015 International Symposium on Software Testing and Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2771783.2771803","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 97

Abstract

We propose a type-based taint analysis for Android. Concretely, we present DFlow, a context-sensitive information flow type system, and DroidInfer, the corresponding type inference analysis for detecting privacy leaks in Android apps. We present novel techniques for error reporting based on CFL-reachability, as well as novel techniques for handling of Android-specific features, including libraries, multiple entry points and callbacks, and inter-component communication. Empirical results show that our approach is scalable and precise. DroidInfer scales well in terms of time and memory and has false-positive rate of 15.7%. It detects privacy leaks in apps from the Google Play Store and in known malware.
可扩展和精确的污染分析Android
我们提出了一个基于类型的Android污染分析。具体来说,我们提出了上下文敏感的信息流类型系统DFlow,以及相应的用于检测Android应用中隐私泄露的类型推断分析DroidInfer。我们提出了基于cfl可达性的错误报告新技术,以及处理android特定功能的新技术,包括库、多入口点和回调,以及组件间通信。实验结果表明,该方法具有可扩展性和精确性。DroidInfer在时间和记忆方面表现良好,假阳性率为15.7%。它可以检测Google Play Store应用程序和已知恶意软件中的隐私泄露。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信