Image of Plant Disease Segmentation Model Based on Pulse Coupled Neural Network with Shuffle Frog Leap Algorithm

X. Guo, Ming Zhang, Yongqiang Dai
{"title":"Image of Plant Disease Segmentation Model Based on Pulse Coupled Neural Network with Shuffle Frog Leap Algorithm","authors":"X. Guo, Ming Zhang, Yongqiang Dai","doi":"10.1109/CIS2018.2018.00044","DOIUrl":null,"url":null,"abstract":"Image segmentation is a key step in feature extraction and disease recognition of plant diseases images. To avoid the subjectivity of using traditional PCNN (pulse-coupled neural network) to segment plant disease image, a new image segmentation model (SFLA-PCNN) is proposed in this paper to get the parameters configuration of PCNN. The weighted sum of cross entropy and compactness degree of image segmentation is chosen as fitness function of shuffled frog leap algorithm to optimize the parameters PCNN, which could improve the performance of PCNN. After 100 times local iteration and 1500 times global iteration, we get the best parameter configure. The extensive tests prove that SFLA-PCNN model could be used to extract the lesion from the background effectively, which could provide a foundation for following disease diagnose.","PeriodicalId":185099,"journal":{"name":"2018 14th International Conference on Computational Intelligence and Security (CIS)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 14th International Conference on Computational Intelligence and Security (CIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIS2018.2018.00044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

Image segmentation is a key step in feature extraction and disease recognition of plant diseases images. To avoid the subjectivity of using traditional PCNN (pulse-coupled neural network) to segment plant disease image, a new image segmentation model (SFLA-PCNN) is proposed in this paper to get the parameters configuration of PCNN. The weighted sum of cross entropy and compactness degree of image segmentation is chosen as fitness function of shuffled frog leap algorithm to optimize the parameters PCNN, which could improve the performance of PCNN. After 100 times local iteration and 1500 times global iteration, we get the best parameter configure. The extensive tests prove that SFLA-PCNN model could be used to extract the lesion from the background effectively, which could provide a foundation for following disease diagnose.
基于脉冲耦合神经网络和Shuffle Frog Leap算法的植物病害图像分割模型
图像分割是植物病害图像特征提取和病害识别的关键步骤。为了避免传统脉冲耦合神经网络(PCNN)分割植物病害图像时的主观性,本文提出了一种新的图像分割模型(SFLA-PCNN),得到了PCNN的参数配置。选择交叉熵和图像分割紧密度的加权和作为shuffle frog leap算法的适应度函数,对PCNN参数进行优化,提高了PCNN的性能。经过100次局部迭代和1500次全局迭代,得到了最佳参数配置。大量的实验证明,SFLA-PCNN模型可以有效地从背景中提取病变,为后续的疾病诊断提供依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信