News story clustering using L-GEM based RBFNN

Wing W. Y. Ng, Xin Ran, P. Chan, D. Yeung
{"title":"News story clustering using L-GEM based RBFNN","authors":"Wing W. Y. Ng, Xin Ran, P. Chan, D. Yeung","doi":"10.1109/ICMLC.2011.6016747","DOIUrl":null,"url":null,"abstract":"With the explosive growth of video resources on the Internet and Internet connected mobile devices, the needs of efficient video retrieval and video clustering are increasing. Video clustering is important because video resources on the Internet may be duplicate and highly similar. To reduce the use of bandwidth, users would like to fetch only one representative video resource instead of a number of highly similar or duplicated videos. In this paper, we first summarize current research development of video retrieval. Then, we propose a new video clustering method based on a Radial Basis Function Neural Network (RBFNN) trained via a minimization of the Localized Generalization Error (L-GEM). The L-GEM provides estimation on the generalization capability of the RBFNN which helps to cluster news video from different channels with higher accuracy. Experimental results show that the proposed method outperforms RBFNN trained without the L-GEM.","PeriodicalId":228516,"journal":{"name":"2011 International Conference on Machine Learning and Cybernetics","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Conference on Machine Learning and Cybernetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLC.2011.6016747","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

With the explosive growth of video resources on the Internet and Internet connected mobile devices, the needs of efficient video retrieval and video clustering are increasing. Video clustering is important because video resources on the Internet may be duplicate and highly similar. To reduce the use of bandwidth, users would like to fetch only one representative video resource instead of a number of highly similar or duplicated videos. In this paper, we first summarize current research development of video retrieval. Then, we propose a new video clustering method based on a Radial Basis Function Neural Network (RBFNN) trained via a minimization of the Localized Generalization Error (L-GEM). The L-GEM provides estimation on the generalization capability of the RBFNN which helps to cluster news video from different channels with higher accuracy. Experimental results show that the proposed method outperforms RBFNN trained without the L-GEM.
基于L-GEM的RBFNN的新闻故事聚类
随着互联网视频资源和移动设备的爆炸式增长,对高效视频检索和视频聚类的需求日益增加。视频聚类很重要,因为互联网上的视频资源可能是重复的和高度相似的。为了减少带宽的使用,用户希望只获取一个具有代表性的视频资源,而不是获取大量高度相似或重复的视频。本文首先综述了当前视频检索的研究进展。然后,我们提出了一种基于最小化局部泛化误差(L-GEM)训练的径向基函数神经网络(RBFNN)的视频聚类方法。L-GEM提供了对RBFNN泛化能力的估计,有助于以更高的精度聚类来自不同频道的新闻视频。实验结果表明,该方法优于未经L-GEM训练的RBFNN。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信