Arabic Tweet-Act: Speech Act Recognition for Arabic Asynchronous Conversations

Bushra Algotiml, AbdelRahim Elmadany, Walid Magdy
{"title":"Arabic Tweet-Act: Speech Act Recognition for Arabic Asynchronous Conversations","authors":"Bushra Algotiml, AbdelRahim Elmadany, Walid Magdy","doi":"10.18653/v1/W19-4620","DOIUrl":null,"url":null,"abstract":"Speech acts are the actions that a speaker intends when performing an utterance within conversations. In this paper, we proposed speech act classification for asynchronous conversations on Twitter using multiple machine learning methods including SVM and deep neural networks. We applied the proposed methods on the ArSAS tweets dataset. The obtained results show that superiority of deep learning methods compared to SVMs, where Bi-LSTM managed to achieve an accuracy of 87.5% and a macro-averaged F1 score 61.5%. We believe that our results are the first to be reported on the task of speech-act recognition for asynchronous conversations on Arabic Twitter.","PeriodicalId":268163,"journal":{"name":"WANLP@ACL 2019","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"WANLP@ACL 2019","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/W19-4620","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Speech acts are the actions that a speaker intends when performing an utterance within conversations. In this paper, we proposed speech act classification for asynchronous conversations on Twitter using multiple machine learning methods including SVM and deep neural networks. We applied the proposed methods on the ArSAS tweets dataset. The obtained results show that superiority of deep learning methods compared to SVMs, where Bi-LSTM managed to achieve an accuracy of 87.5% and a macro-averaged F1 score 61.5%. We believe that our results are the first to be reported on the task of speech-act recognition for asynchronous conversations on Arabic Twitter.
阿拉伯语tweets -Act:阿拉伯语异步对话的语音行为识别
言语行为是说话人在对话中进行话语表达时所要做的动作。在本文中,我们使用包括SVM和深度神经网络在内的多种机器学习方法对Twitter上的异步会话进行语音行为分类。我们将提出的方法应用于ArSAS tweets数据集。所获得的结果表明,深度学习方法与支持向量机相比具有优势,其中Bi-LSTM的准确率达到87.5%,宏观平均F1分数达到61.5%。我们相信我们的结果是第一个关于阿拉伯语Twitter上异步对话的语音行为识别任务的报告。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信