SAC-1 variable precision floating point arithmetic

ACM '75 Pub Date : 1900-01-01 DOI:10.1145/800181.810341
J. Pinkert
{"title":"SAC-1 variable precision floating point arithmetic","authors":"J. Pinkert","doi":"10.1145/800181.810341","DOIUrl":null,"url":null,"abstract":"With most FORTRAN implementations, each variable V in a user's program is characterized at compile time as V<subscrpt>(B, M, N)</subscrpt> to specify that V can store exactly only values of the form ±b<subscrpt>1</subscrpt>b<subscrpt>2</subscrpt>... b<subscrpt>m</subscrpt> x B<subscrpt>±n</subscrpt>, where the b<subscrpt>j</subscrpt> are B-digits, m ≤ M, and n ≤ N. One typical triple is (16, 6, 64). A system has been developed in which (10<supscrpt>8</supscrpt>, 10<supscrpt>3</supscrpt>, 10<supscrpt>8</supscrpt>) is readily attainable, and M can be changed during execution. To achieve efficiency and portability, the implementation makes extensive use of the SAC-1 system developed by George Collins. This paper describes the routines comprising the system, and discusses a sample application, Theoretical and empirical computing times are also presented.","PeriodicalId":447373,"journal":{"name":"ACM '75","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM '75","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/800181.810341","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

With most FORTRAN implementations, each variable V in a user's program is characterized at compile time as V(B, M, N) to specify that V can store exactly only values of the form ±b1b2... bm x B±n, where the bj are B-digits, m ≤ M, and n ≤ N. One typical triple is (16, 6, 64). A system has been developed in which (108, 103, 108) is readily attainable, and M can be changed during execution. To achieve efficiency and portability, the implementation makes extensive use of the SAC-1 system developed by George Collins. This paper describes the routines comprising the system, and discusses a sample application, Theoretical and empirical computing times are also presented.
可变精度浮点运算
对于大多数FORTRAN实现,用户程序中的每个变量V在编译时被描述为V(B, M, N),以指定V只能存储形式为±b1b2…的值。bm × B±n,其中bj为B位数,m≤m, n≤n。一个典型的三元组是(16,6,64)。已经开发了一个系统,其中(108,103,108)很容易获得,并且M可以在执行过程中改变。为了实现效率和可移植性,该实现广泛使用了George Collins开发的SAC-1系统。本文介绍了该系统的组成程序,并讨论了一个实例应用,给出了理论计算时间和经验计算时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信