Logistic Regression Hyperparameter Optimization for Cancer Classification

Ahmed Ahmed Arafa, M. Radad, M. Badawy, Nawal A. El-Fishawy
{"title":"Logistic Regression Hyperparameter Optimization for Cancer Classification","authors":"Ahmed Ahmed Arafa, M. Radad, M. Badawy, Nawal A. El-Fishawy","doi":"10.21608/mjeer.2021.70512.1034","DOIUrl":null,"url":null,"abstract":"In machine learning, optimization of hyperparameters aims to find the best values of model hyperparameters yielding an optimal model with minimum prediction error. It is the most important step that directly affects the performance of learned model. Many techniques have been proposed to optimize hyperparameters for different predictive models. In this paper, the performance of grid search, random search, Bayesian Tree Parzen Estimator (TPE) and Simulated Annealing (SA) optimization techniques is evaluated to determine the best hyperparameters for a logistic regression model when used in cancer classification. Wisconsin Breast Cancer Dataset (WBCD) has been used to evaluate the previously mentioned optimization techniques. The results show that Bayesian TPE outperformed other techniques in terms of number of iterations and running time. The number of iterations to get optimal parameters in TPE is less than SA by 75.75 %, and random search by 77.1%. While the time taken by TPE is better than SA, random search and grid search by 79.9%, 86.1% and 99.9% respectively. The resulted optimal hyperparameter values have been utilized to learn a logistic regression model to classify cancer using WBCD dataset. The optimized model succeeded in classifying cancer with 98.2% for test accuracy, 0.962 for kappa statistic and 0.963 for MCC metrics when evaluated using 10-fold cross validation. Keywords— Hyperparameter Optimization, Random Search Grid Search, Tree Parzen Estimator, Simulated Annealing","PeriodicalId":218019,"journal":{"name":"Menoufia Journal of Electronic Engineering Research","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Menoufia Journal of Electronic Engineering Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21608/mjeer.2021.70512.1034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In machine learning, optimization of hyperparameters aims to find the best values of model hyperparameters yielding an optimal model with minimum prediction error. It is the most important step that directly affects the performance of learned model. Many techniques have been proposed to optimize hyperparameters for different predictive models. In this paper, the performance of grid search, random search, Bayesian Tree Parzen Estimator (TPE) and Simulated Annealing (SA) optimization techniques is evaluated to determine the best hyperparameters for a logistic regression model when used in cancer classification. Wisconsin Breast Cancer Dataset (WBCD) has been used to evaluate the previously mentioned optimization techniques. The results show that Bayesian TPE outperformed other techniques in terms of number of iterations and running time. The number of iterations to get optimal parameters in TPE is less than SA by 75.75 %, and random search by 77.1%. While the time taken by TPE is better than SA, random search and grid search by 79.9%, 86.1% and 99.9% respectively. The resulted optimal hyperparameter values have been utilized to learn a logistic regression model to classify cancer using WBCD dataset. The optimized model succeeded in classifying cancer with 98.2% for test accuracy, 0.962 for kappa statistic and 0.963 for MCC metrics when evaluated using 10-fold cross validation. Keywords— Hyperparameter Optimization, Random Search Grid Search, Tree Parzen Estimator, Simulated Annealing
肿瘤分类的逻辑回归超参数优化
在机器学习中,超参数优化的目的是找到模型超参数的最优值,从而得到预测误差最小的最优模型。它是直接影响学习模型性能的最重要的一步。已经提出了许多技术来优化不同预测模型的超参数。本文评估了网格搜索、随机搜索、贝叶斯树Parzen估计(TPE)和模拟退火(SA)优化技术的性能,以确定用于癌症分类的逻辑回归模型的最佳超参数。威斯康星乳腺癌数据集(WBCD)被用来评估前面提到的优化技术。结果表明,贝叶斯TPE在迭代次数和运行时间方面优于其他技术。TPE优化参数的迭代次数比SA算法少75.75%,比随机搜索算法少77.1%。而TPE的搜索时间比SA、随机搜索和网格搜索分别低79.9%、86.1%和99.9%。利用得到的最优超参数值学习逻辑回归模型,利用WBCD数据集对癌症进行分类。优化后的模型在10倍交叉验证中,检测准确率为98.2%,kappa统计量为0.962,MCC指标为0.963。关键词:超参数优化,随机搜索,网格搜索,树Parzen估计,模拟退火
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信