Performance analysis of novel adaptive model for non-linear dynamics system identification

B N Sahu, M N Mohanty, S. Padhi, P K Nayak
{"title":"Performance analysis of novel adaptive model for non-linear dynamics system identification","authors":"B N Sahu, M N Mohanty, S. Padhi, P K Nayak","doi":"10.1109/ICCSP.2015.7322637","DOIUrl":null,"url":null,"abstract":"Tasks of system identification has occupied an important space in research field for development of automated system. Artificial neural network (ANN) model is most suitable for analysis of dynamic systems. It has been exploited in this work as an alternative approach for such task. The objective of this paper is to design a novel technique to improve the performance of the existing techniques. Adaptive learning algorithm is applied with the sliding mode strategy for the neuron models. It is considered for the first-order dynamic system with adjustable parameters. It can perform for faster convergence with robust characteristics. It has been chosen as suitable alternative for nonlinear system identification as it has good function approximation capabilities. It has been shown that the proposed ANN model can be used to model the complex dynamic systems. Also the performance analysis has been done using different methods like Sliding Mode strategy, MLP-Back propagation, FLANN-LMS and compared for system identification.","PeriodicalId":174192,"journal":{"name":"2015 International Conference on Communications and Signal Processing (ICCSP)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Communications and Signal Processing (ICCSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCSP.2015.7322637","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Tasks of system identification has occupied an important space in research field for development of automated system. Artificial neural network (ANN) model is most suitable for analysis of dynamic systems. It has been exploited in this work as an alternative approach for such task. The objective of this paper is to design a novel technique to improve the performance of the existing techniques. Adaptive learning algorithm is applied with the sliding mode strategy for the neuron models. It is considered for the first-order dynamic system with adjustable parameters. It can perform for faster convergence with robust characteristics. It has been chosen as suitable alternative for nonlinear system identification as it has good function approximation capabilities. It has been shown that the proposed ANN model can be used to model the complex dynamic systems. Also the performance analysis has been done using different methods like Sliding Mode strategy, MLP-Back propagation, FLANN-LMS and compared for system identification.
非线性动力学系统辨识新自适应模型的性能分析
系统识别任务在自动化系统的发展中占有重要的研究领域。人工神经网络(ANN)模型最适合于动态系统的分析。在这项工作中,它已被利用作为这种任务的替代方法。本文的目标是设计一种新的技术来改进现有技术的性能。对神经元模型采用自适应学习算法和滑模策略。考虑了参数可调的一阶动态系统。它具有较快的收敛速度和鲁棒性。它具有良好的函数逼近能力,是非线性系统辨识的理想选择。结果表明,所提出的人工神经网络模型可以用于复杂动态系统的建模。采用滑模策略、MLP-Back传播、FLANN-LMS等方法对系统进行了性能分析,并对系统辨识进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信