Data volume reduction in high-resolution wide-swath SAR systems

Michelangelo Villano, G. Krieger, A. Moreira
{"title":"Data volume reduction in high-resolution wide-swath SAR systems","authors":"Michelangelo Villano, G. Krieger, A. Moreira","doi":"10.1109/APSAR.2015.7306169","DOIUrl":null,"url":null,"abstract":"High-resolution wide-swath (HRWS) synthetic aperture radar (SAR) systems are very attractive for the observation of dynamic processes on the Earth's surface, but they are also associated with a huge data volume. In order to comply with azimuth ambiguity requirements, in fact, a pulse repetition frequency (PRF) much higher than the required processed Doppler bandwidth (PBW) is often desirable. The data volume can be drastically reduced, if on-board Doppler filtering and decimation are performed prior to downlink. A finite impulse response (FIR) filter with a relatively small number of taps suffices to suppress the additional ambiguous components and recover the original impulse response. This strategy is also applicable and especially relevant to staggered SAR systems, where on-board Doppler filtering and resampling can be jointly implemented.","PeriodicalId":350698,"journal":{"name":"2015 IEEE 5th Asia-Pacific Conference on Synthetic Aperture Radar (APSAR)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 5th Asia-Pacific Conference on Synthetic Aperture Radar (APSAR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APSAR.2015.7306169","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

High-resolution wide-swath (HRWS) synthetic aperture radar (SAR) systems are very attractive for the observation of dynamic processes on the Earth's surface, but they are also associated with a huge data volume. In order to comply with azimuth ambiguity requirements, in fact, a pulse repetition frequency (PRF) much higher than the required processed Doppler bandwidth (PBW) is often desirable. The data volume can be drastically reduced, if on-board Doppler filtering and decimation are performed prior to downlink. A finite impulse response (FIR) filter with a relatively small number of taps suffices to suppress the additional ambiguous components and recover the original impulse response. This strategy is also applicable and especially relevant to staggered SAR systems, where on-board Doppler filtering and resampling can be jointly implemented.
高分辨率宽幅SAR系统中数据量的减少
高分辨率宽幅(HRWS)合成孔径雷达(SAR)系统对于观测地球表面的动态过程非常有吸引力,但它们也与巨大的数据量有关。事实上,为了满足方位模糊度要求,通常需要远高于处理后多普勒带宽(PBW)的脉冲重复频率。如果在下行之前进行板载多普勒滤波和抽取,数据量可以大大减少。具有相对较少抽头的有限脉冲响应(FIR)滤波器足以抑制额外的模糊分量并恢复原始脉冲响应。该策略也适用于交错SAR系统,其中机载多普勒滤波和重采样可以联合实施。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信