{"title":"Age Inference on Twitter using SAGE and TF-IGM","authors":"J. Cornelisse, Reshmi Gopalakrishna Pillai","doi":"10.1145/3443279.3443300","DOIUrl":null,"url":null,"abstract":"Social media is increasingly influential in day-to-day life. People are more than ever sharing, posting, liking, and following different activities on disparate social media. Deriving specific attributes of users based on their online behavior is a growing research field. In this study, a novel methodology is proposed for determining the age of Twitter users. We classify three separate age groups, namely, 18--24, 25--54, 55 >. We compute numerous linguistic features from the tweets of users, obtain significant terms extracted by the SAGE algorithms, and retrieve relevant meta-data of users by extracting information on their followed interests on Twitter using TF-IGM. The final logistic regression model obtains a macro F1-score of 78%. This way, effectively combining NLP and IR techniques for attribute inference on social media.","PeriodicalId":414366,"journal":{"name":"Proceedings of the 4th International Conference on Natural Language Processing and Information Retrieval","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 4th International Conference on Natural Language Processing and Information Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3443279.3443300","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
Social media is increasingly influential in day-to-day life. People are more than ever sharing, posting, liking, and following different activities on disparate social media. Deriving specific attributes of users based on their online behavior is a growing research field. In this study, a novel methodology is proposed for determining the age of Twitter users. We classify three separate age groups, namely, 18--24, 25--54, 55 >. We compute numerous linguistic features from the tweets of users, obtain significant terms extracted by the SAGE algorithms, and retrieve relevant meta-data of users by extracting information on their followed interests on Twitter using TF-IGM. The final logistic regression model obtains a macro F1-score of 78%. This way, effectively combining NLP and IR techniques for attribute inference on social media.