Low-Complexity Hybrid Algorithm for Decoding Convolutional Codes

Ziyun Fu, Haiyang Liu
{"title":"Low-Complexity Hybrid Algorithm for Decoding Convolutional Codes","authors":"Ziyun Fu, Haiyang Liu","doi":"10.1109/ICCC56324.2022.10065728","DOIUrl":null,"url":null,"abstract":"The Viterbi algorithm is one of the most commonly used methods for decoding convolutional codes, which outputs a maximum-likelihood codeword for the input sequence. However, the complexity of the Viterbi algorithm is high when the constraint length is large. To address this issue, we propose a hybrid algorithm that contains at most two stages for decoding convolutional codes in this paper. In the first stage, the normalized min-sum algorithm (NMSA) with a small number of iterations is applied. If the output of the NMSA is not a codeword, the scarce-state-transition (SST) Viterbi algorithm is invoked for the second stage of decoding. We provide a method for constructing the input vector of the SST Viterbi algorithm, from which a truncating method is further presented for complexity reduction. Simulation results on two rate-l/2 convolutional codes show that the proposed hybrid algorithm has little performance degradation compared with the Viterbi algorithm. Meanwhile, the complexity of the proposed hybrid algorithm is reduced, especially in the high signal-to-noise ratio region.","PeriodicalId":263098,"journal":{"name":"2022 IEEE 8th International Conference on Computer and Communications (ICCC)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 8th International Conference on Computer and Communications (ICCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCC56324.2022.10065728","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The Viterbi algorithm is one of the most commonly used methods for decoding convolutional codes, which outputs a maximum-likelihood codeword for the input sequence. However, the complexity of the Viterbi algorithm is high when the constraint length is large. To address this issue, we propose a hybrid algorithm that contains at most two stages for decoding convolutional codes in this paper. In the first stage, the normalized min-sum algorithm (NMSA) with a small number of iterations is applied. If the output of the NMSA is not a codeword, the scarce-state-transition (SST) Viterbi algorithm is invoked for the second stage of decoding. We provide a method for constructing the input vector of the SST Viterbi algorithm, from which a truncating method is further presented for complexity reduction. Simulation results on two rate-l/2 convolutional codes show that the proposed hybrid algorithm has little performance degradation compared with the Viterbi algorithm. Meanwhile, the complexity of the proposed hybrid algorithm is reduced, especially in the high signal-to-noise ratio region.
卷积码译码的低复杂度混合算法
Viterbi算法是卷积码解码最常用的方法之一,它为输入序列输出一个最大似然码字。然而,当约束长度较大时,Viterbi算法的复杂度较高。为了解决这个问题,本文提出了一种最多包含两个阶段的卷积码解码混合算法。第一阶段采用迭代次数较少的归一化最小和算法(NMSA)。如果NMSA的输出不是码字,则在解码的第二阶段调用稀缺状态转换(SST) Viterbi算法。我们提出了一种构造SST Viterbi算法输入向量的方法,并在此基础上进一步提出了一种截断方法来降低复杂度。在两种速率为1 /2的卷积码上的仿真结果表明,与Viterbi算法相比,该混合算法具有较小的性能下降。同时降低了混合算法的复杂度,特别是在高信噪比区域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信