Surface Segmentation through Concentrated Curvature

M. Mesmoudi, E. Danovaro, L. Floriani, Umberto Port
{"title":"Surface Segmentation through Concentrated Curvature","authors":"M. Mesmoudi, E. Danovaro, L. Floriani, Umberto Port","doi":"10.1109/ICIAP.2007.123","DOIUrl":null,"url":null,"abstract":"Curvature is one of the most relevant notions that links the metric properties of a surface to its geometry and to its topology (Gauss-Bonnet theorem). In the literature, a variety of approaches exist to compute curvatures in the discrete case. Several techniques are computationally intensive or suffer from convergence problems. In this paper, we discuss the notion of concentrated curvature, introduced by Troyanov [24]. We discuss properties of this curvature and compare with a widely-used technique that estimates the Gaussian curvatures on a triangulated surface. We apply our STD method [13] for terrain segmentation to segment a surface by using different curvature approaches and we illustrate our comparisons through examples.","PeriodicalId":118466,"journal":{"name":"14th International Conference on Image Analysis and Processing (ICIAP 2007)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"14th International Conference on Image Analysis and Processing (ICIAP 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIAP.2007.123","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Curvature is one of the most relevant notions that links the metric properties of a surface to its geometry and to its topology (Gauss-Bonnet theorem). In the literature, a variety of approaches exist to compute curvatures in the discrete case. Several techniques are computationally intensive or suffer from convergence problems. In this paper, we discuss the notion of concentrated curvature, introduced by Troyanov [24]. We discuss properties of this curvature and compare with a widely-used technique that estimates the Gaussian curvatures on a triangulated surface. We apply our STD method [13] for terrain segmentation to segment a surface by using different curvature approaches and we illustrate our comparisons through examples.
集中曲率曲面分割
曲率是最相关的概念之一,它将曲面的度量属性与其几何和拓扑(高斯-邦尼特定理)联系起来。在文献中,存在多种方法来计算离散情况下的曲率。有几种技术需要大量计算,或者存在收敛问题。本文讨论了由Troyanov[24]引入的集中曲率的概念。我们讨论了这种曲率的性质,并与在三角曲面上估计高斯曲率的一种广泛使用的技术进行了比较。我们将STD方法[13]应用于地形分割,通过使用不同的曲率方法来分割一个表面,并通过示例说明我们的比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信