Is Unequal Error Protection useful?

Ozgun Y. Bursalioglu, G. Caire
{"title":"Is Unequal Error Protection useful?","authors":"Ozgun Y. Bursalioglu, G. Caire","doi":"10.1109/ISIT.2011.6033770","DOIUrl":null,"url":null,"abstract":"When transmitting source-encoded data, not all information bits are equally important, due to the different sensitivity of the source decoder to errors. Unequal Error Protection (UEP) consists of allocating coding redundancy depending on the importance of the information bits. We consider progressive transmission of source-encoded data under three different packet formats where either number of source bits per packet is fixed (fixed-k approach), or packet block length is fixed (fixed-n approach) or both parameters allowed to vary for each block (variable-(n, k) approach). Most existing results are based on some chosen family of channel codes and consider a single-user setting. Thanks to the recent finite length error probability results by Polyanskiy et al., in this work we investigate the UEP concept using the new finite-length random coding bounds. In the single-user case, we show that when codes meeting Polyanskiy achievability bounds are used, UEP does not obtain significant advantages over Equal-Error Protection (EEP) (advantages disappear for the variable-(n, k) case). Based on these results, a low complexity optimization algorithm is proposed for the multiuser (multicast) scenario.","PeriodicalId":208375,"journal":{"name":"2011 IEEE International Symposium on Information Theory Proceedings","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Symposium on Information Theory Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT.2011.6033770","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

When transmitting source-encoded data, not all information bits are equally important, due to the different sensitivity of the source decoder to errors. Unequal Error Protection (UEP) consists of allocating coding redundancy depending on the importance of the information bits. We consider progressive transmission of source-encoded data under three different packet formats where either number of source bits per packet is fixed (fixed-k approach), or packet block length is fixed (fixed-n approach) or both parameters allowed to vary for each block (variable-(n, k) approach). Most existing results are based on some chosen family of channel codes and consider a single-user setting. Thanks to the recent finite length error probability results by Polyanskiy et al., in this work we investigate the UEP concept using the new finite-length random coding bounds. In the single-user case, we show that when codes meeting Polyanskiy achievability bounds are used, UEP does not obtain significant advantages over Equal-Error Protection (EEP) (advantages disappear for the variable-(n, k) case). Based on these results, a low complexity optimization algorithm is proposed for the multiuser (multicast) scenario.
不等错误保护有用吗?
在传输源编码数据时,由于源解码器对错误的敏感度不同,并非所有信息位都同等重要。不等错误保护(UEP)包括根据信息位的重要性分配编码冗余。我们考虑源编码数据在三种不同数据包格式下的渐进式传输,其中每个数据包的源比特数是固定的(固定-k方法),或者数据包块长度是固定的(固定-n方法),或者每个块允许两个参数变化(可变-(n, k)方法)。大多数现有的结果都是基于一些选定的频道代码族,并考虑单用户设置。由于polyansky等人最近的有限长度错误概率结果,在这项工作中,我们使用新的有限长度随机编码界来研究UEP概念。在单用户情况下,我们表明,当使用满足Polyanskiy可实现性界限的代码时,UEP并不比等错保护(EEP)获得显著优势(对于变量-(n, k)情况,优势消失)。在此基础上,提出了一种低复杂度的多用户组播优化算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信