Channel-Wise Spatial Attention with Spatiotemporal Heterogeneous Framework for Action Recognition

Yiying Li, Yulin Li, Yanfei Gu
{"title":"Channel-Wise Spatial Attention with Spatiotemporal Heterogeneous Framework for Action Recognition","authors":"Yiying Li, Yulin Li, Yanfei Gu","doi":"10.1145/3404555.3404592","DOIUrl":null,"url":null,"abstract":"Recent years have witnessed the effective of attention network based on two-stream for video action recognition. However, most methods adopt the same structure on spatial stream and temporal stream, which produce amount redundant information and often ignore the relevance among channels. In this paper, we propose a channel-wise spatial attention with spatiotemporal heterogeneous framework, a new approach to action recognition. First, we employ two different network structures for spatial stream and temporal stream to improve the performance of action recognition. Then, we design a channel-wise network and spatial network inspired by self-attention mechanism to obtain the fine-grained and salient information of the video. Finally, the feature of video for action recognition is generated by end-to-end training. Experimental results on the datasets HMDB51 and UCF101 shows our method can effectively recognize the actions in the video.","PeriodicalId":220526,"journal":{"name":"Proceedings of the 2020 6th International Conference on Computing and Artificial Intelligence","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2020 6th International Conference on Computing and Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3404555.3404592","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Recent years have witnessed the effective of attention network based on two-stream for video action recognition. However, most methods adopt the same structure on spatial stream and temporal stream, which produce amount redundant information and often ignore the relevance among channels. In this paper, we propose a channel-wise spatial attention with spatiotemporal heterogeneous framework, a new approach to action recognition. First, we employ two different network structures for spatial stream and temporal stream to improve the performance of action recognition. Then, we design a channel-wise network and spatial network inspired by self-attention mechanism to obtain the fine-grained and salient information of the video. Finally, the feature of video for action recognition is generated by end-to-end training. Experimental results on the datasets HMDB51 and UCF101 shows our method can effectively recognize the actions in the video.
基于时空异构框架的通道空间注意行为识别
近年来,基于双流的注意力网络在视频动作识别中取得了显著的效果。然而,大多数方法在空间流和时间流上采用相同的结构,产生了大量的冗余信息,往往忽略了信道之间的相关性。在本文中,我们提出了一种具有时空异构框架的通道型空间注意,这是一种新的动作识别方法。首先,我们采用空间流和时间流两种不同的网络结构来提高动作识别的性能。然后,我们设计了基于自关注机制的通道网络和空间网络,以获取视频的细粒度和显著性信息。最后,通过端到端训练生成用于动作识别的视频特征。在HMDB51和UCF101数据集上的实验结果表明,我们的方法可以有效地识别视频中的动作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信