Global behavior for the classical solution of compressible viscous micropolar fluid with cylinder symmetry

L. Huang, Zhiying Sun, Xinguang Yang, A. Miranville
{"title":"Global behavior for the classical solution of compressible viscous micropolar fluid with cylinder symmetry","authors":"L. Huang, Zhiying Sun, Xinguang Yang, A. Miranville","doi":"10.3934/cpaa.2022033","DOIUrl":null,"url":null,"abstract":"<p style='text-indent:20px;'>This paper is concerned with the global solutions of the 3D compressible micropolar fluid model in the domain to a subset of <inline-formula><tex-math id=\"M1\">\\begin{document}$ R^3 $\\end{document}</tex-math></inline-formula> bounded with two coaxial cylinders that present the solid thermo-insulated walls, which is in a thermodynamical sense perfect and polytropic. Compared with the classical Navier-Stokes equations, the angular velocity <inline-formula><tex-math id=\"M2\">\\begin{document}$ w $\\end{document}</tex-math></inline-formula> in this model brings benefit that is the damping term -<inline-formula><tex-math id=\"M3\">\\begin{document}$ uw $\\end{document}</tex-math></inline-formula> can provide extra regularity of <inline-formula><tex-math id=\"M4\">\\begin{document}$ w $\\end{document}</tex-math></inline-formula>. At the same time, the term <inline-formula><tex-math id=\"M5\">\\begin{document}$ uw^2 $\\end{document}</tex-math></inline-formula> is bad, it increases the nonlinearity of our system. Moreover, the regularity and exponential stability in <inline-formula><tex-math id=\"M6\">\\begin{document}$ H^4 $\\end{document}</tex-math></inline-formula> also are proved.</p>","PeriodicalId":435074,"journal":{"name":"Communications on Pure &amp; Applied Analysis","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications on Pure &amp; Applied Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/cpaa.2022033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper is concerned with the global solutions of the 3D compressible micropolar fluid model in the domain to a subset of \begin{document}$ R^3 $\end{document} bounded with two coaxial cylinders that present the solid thermo-insulated walls, which is in a thermodynamical sense perfect and polytropic. Compared with the classical Navier-Stokes equations, the angular velocity \begin{document}$ w $\end{document} in this model brings benefit that is the damping term -\begin{document}$ uw $\end{document} can provide extra regularity of \begin{document}$ w $\end{document}. At the same time, the term \begin{document}$ uw^2 $\end{document} is bad, it increases the nonlinearity of our system. Moreover, the regularity and exponential stability in \begin{document}$ H^4 $\end{document} also are proved.

具有圆柱对称的可压缩粘性微极流体经典解的全局行为
This paper is concerned with the global solutions of the 3D compressible micropolar fluid model in the domain to a subset of \begin{document}$ R^3 $\end{document} bounded with two coaxial cylinders that present the solid thermo-insulated walls, which is in a thermodynamical sense perfect and polytropic. Compared with the classical Navier-Stokes equations, the angular velocity \begin{document}$ w $\end{document} in this model brings benefit that is the damping term -\begin{document}$ uw $\end{document} can provide extra regularity of \begin{document}$ w $\end{document}. At the same time, the term \begin{document}$ uw^2 $\end{document} is bad, it increases the nonlinearity of our system. Moreover, the regularity and exponential stability in \begin{document}$ H^4 $\end{document} also are proved.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信