Mesh Classification With Dilated Mesh Convolutions

Vinit Veerendraveer Singh, Shivanand Venkanna Sheshappanavar, C. Kambhamettu
{"title":"Mesh Classification With Dilated Mesh Convolutions","authors":"Vinit Veerendraveer Singh, Shivanand Venkanna Sheshappanavar, C. Kambhamettu","doi":"10.1109/ICIP42928.2021.9506311","DOIUrl":null,"url":null,"abstract":"Unlike images, meshes are irregular and unstructured. Thus, it is not trivial to extend existing image-based deep learning approaches for mesh analysis. In this paper, inspired by dilated convolutions for images, we proffer dilated convolutions for meshes. Our Dilated Mesh Convolution (DMC) unit inflates the kernels’ receptive field without increasing the number of learnable parameters. We also propose a Stacked Dilated Mesh Convolution (SDMC) block by stacking DMC units. It considers spatial regions around mesh faces’ at multiple scales while summarizing the neighboring contextual information. We accommodated SDMC in MeshNet to classify 3D meshes. Experimental results demonstrate that this redesigned model significantly improves classification accuracy on multiple data sets. Code is available at https://github.com/VimsLab/DMC.","PeriodicalId":314429,"journal":{"name":"2021 IEEE International Conference on Image Processing (ICIP)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP42928.2021.9506311","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Unlike images, meshes are irregular and unstructured. Thus, it is not trivial to extend existing image-based deep learning approaches for mesh analysis. In this paper, inspired by dilated convolutions for images, we proffer dilated convolutions for meshes. Our Dilated Mesh Convolution (DMC) unit inflates the kernels’ receptive field without increasing the number of learnable parameters. We also propose a Stacked Dilated Mesh Convolution (SDMC) block by stacking DMC units. It considers spatial regions around mesh faces’ at multiple scales while summarizing the neighboring contextual information. We accommodated SDMC in MeshNet to classify 3D meshes. Experimental results demonstrate that this redesigned model significantly improves classification accuracy on multiple data sets. Code is available at https://github.com/VimsLab/DMC.
扩展网格卷积的网格分类
与图像不同,网格是不规则和非结构化的。因此,扩展现有的基于图像的深度学习方法进行网格分析并非易事。在本文中,受图像的扩展卷积的启发,我们提出了网格的扩展卷积。我们的扩展网格卷积(DMC)单元在不增加可学习参数数量的情况下扩大了核的接受域。我们还通过堆叠DMC单元提出了堆叠扩展网格卷积(SDMC)块。它考虑网格面周围的多个尺度的空间区域,同时总结相邻的上下文信息。我们在MeshNet中引入SDMC来对3D网格进行分类。实验结果表明,该模型在多个数据集上显著提高了分类精度。代码可从https://github.com/VimsLab/DMC获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信