Robust Hand Detection Based on Convolutional Neural Network and Attention Module

Duy-Linh Nguyen, M. D. Putro, Xuan-Thuy Vo, T. Tran, K. Jo
{"title":"Robust Hand Detection Based on Convolutional Neural Network and Attention Module","authors":"Duy-Linh Nguyen, M. D. Putro, Xuan-Thuy Vo, T. Tran, K. Jo","doi":"10.1109/IWIS56333.2022.9920913","DOIUrl":null,"url":null,"abstract":"The hands are essential parts, helping people to contact and communicate with the surrounding environment. Hand gesture and position detection is an interesting topic in computer vision field, it was applied in the areas such as action recognition, Human-Computer Interaction, Human-Robot Interaction, control systems, etc. With the strong emergence of artificial neural networks and computer hardware devices, it becomes easier to apply hand detection in practice. Based on the benefits of convolutional neural network (CNN) and bottleneck attention module, this paper proposes a robust CNN for hand detection. The proposed network achieved 95.52% of average precision (AP) on the Egohands test set and 59.07 frames per second (FPS) on the Intel Core I7–4770 @ 3.40 GHz CPU in real-time testing.","PeriodicalId":340399,"journal":{"name":"2022 International Workshop on Intelligent Systems (IWIS)","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Workshop on Intelligent Systems (IWIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWIS56333.2022.9920913","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The hands are essential parts, helping people to contact and communicate with the surrounding environment. Hand gesture and position detection is an interesting topic in computer vision field, it was applied in the areas such as action recognition, Human-Computer Interaction, Human-Robot Interaction, control systems, etc. With the strong emergence of artificial neural networks and computer hardware devices, it becomes easier to apply hand detection in practice. Based on the benefits of convolutional neural network (CNN) and bottleneck attention module, this paper proposes a robust CNN for hand detection. The proposed network achieved 95.52% of average precision (AP) on the Egohands test set and 59.07 frames per second (FPS) on the Intel Core I7–4770 @ 3.40 GHz CPU in real-time testing.
基于卷积神经网络和注意模块的鲁棒手部检测
手是必不可少的部分,帮助人们与周围的环境接触和交流。手势和位置检测是计算机视觉领域的一个有趣的研究课题,它被应用于动作识别、人机交互、人机交互、控制系统等领域。随着人工神经网络和计算机硬件设备的兴起,手部检测在实践中的应用变得更加容易。基于卷积神经网络(CNN)和瓶颈注意模块的优点,提出了一种鲁棒的卷积神经网络手部检测方法。该网络在Egohands测试集上达到95.52%的平均精度(AP),在Intel酷睿I7-4770 @ 3.40 GHz CPU上实现了59.07帧/秒(FPS)的实时测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信