Faster Quantum-inspired Algorithms for Solving Linear Systems

Changpeng Shao, A. Montanaro
{"title":"Faster Quantum-inspired Algorithms for Solving Linear Systems","authors":"Changpeng Shao, A. Montanaro","doi":"10.1145/3520141","DOIUrl":null,"url":null,"abstract":"We establish an improved classical algorithm for solving linear systems in a model analogous to the QRAM that is used by quantum linear solvers. Precisely, for the linear system \\( A{\\bf x}= {\\bf b} \\) , we show that there is a classical algorithm that outputs a data structure for \\( {\\bf x} \\) allowing sampling and querying to the entries, where \\( {\\bf x} \\) is such that \\( \\Vert {\\bf x}- A^{+}{\\bf b}\\Vert \\le \\epsilon \\Vert A^{+}{\\bf b}\\Vert \\) . This output can be viewed as a classical analogue to the output of quantum linear solvers. The complexity of our algorithm is \\( \\widetilde{O}(\\kappa _F^6 \\kappa ^2/\\epsilon ^2) \\) , where \\( \\kappa _F = \\Vert A\\Vert _F\\Vert A^{+}\\Vert \\) and \\( \\kappa = \\Vert A\\Vert \\Vert A^{+}\\Vert \\) . This improves the previous best algorithm [Gilyén, Song and Tang, arXiv:2009.07268] of complexity \\( \\widetilde{O}(\\kappa _F^6 \\kappa ^6/\\epsilon ^4) \\) . Our algorithm is based on the randomized Kaczmarz method, which is a particular case of stochastic gradient descent. We also find that when A is row sparse, this method already returns an approximate solution \\( {\\bf x} \\) in time \\( \\widetilde{O}(\\kappa _F^2) \\) , while the best quantum algorithm known returns \\( | {\\bf x} \\rangle \\) in time \\( \\widetilde{O}(\\kappa _F) \\) when A is stored in the QRAM data structure. As a result, assuming access to QRAM and if A is row sparse, the speedup based on current quantum algorithms is quadratic.","PeriodicalId":365166,"journal":{"name":"ACM Transactions on Quantum Computing","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Quantum Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3520141","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

We establish an improved classical algorithm for solving linear systems in a model analogous to the QRAM that is used by quantum linear solvers. Precisely, for the linear system \( A{\bf x}= {\bf b} \) , we show that there is a classical algorithm that outputs a data structure for \( {\bf x} \) allowing sampling and querying to the entries, where \( {\bf x} \) is such that \( \Vert {\bf x}- A^{+}{\bf b}\Vert \le \epsilon \Vert A^{+}{\bf b}\Vert \) . This output can be viewed as a classical analogue to the output of quantum linear solvers. The complexity of our algorithm is \( \widetilde{O}(\kappa _F^6 \kappa ^2/\epsilon ^2) \) , where \( \kappa _F = \Vert A\Vert _F\Vert A^{+}\Vert \) and \( \kappa = \Vert A\Vert \Vert A^{+}\Vert \) . This improves the previous best algorithm [Gilyén, Song and Tang, arXiv:2009.07268] of complexity \( \widetilde{O}(\kappa _F^6 \kappa ^6/\epsilon ^4) \) . Our algorithm is based on the randomized Kaczmarz method, which is a particular case of stochastic gradient descent. We also find that when A is row sparse, this method already returns an approximate solution \( {\bf x} \) in time \( \widetilde{O}(\kappa _F^2) \) , while the best quantum algorithm known returns \( | {\bf x} \rangle \) in time \( \widetilde{O}(\kappa _F) \) when A is stored in the QRAM data structure. As a result, assuming access to QRAM and if A is row sparse, the speedup based on current quantum algorithms is quadratic.
求解线性系统的更快量子启发算法
我们建立了一种改进的经典算法来求解线性系统的模型,类似于量子线性求解器所使用的QRAM。准确地说,对于线性系统\( A{\bf x}= {\bf b} \),我们展示了一个经典算法,它为\( {\bf x} \)输出一个数据结构,允许对条目进行采样和查询,其中\( {\bf x} \)使得\( \Vert {\bf x}- A^{+}{\bf b}\Vert \le \epsilon \Vert A^{+}{\bf b}\Vert \)。这种输出可以看作是量子线性解算器输出的经典模拟。我们算法的复杂度为\( \widetilde{O}(\kappa _F^6 \kappa ^2/\epsilon ^2) \),其中\( \kappa _F = \Vert A\Vert _F\Vert A^{+}\Vert \)和\( \kappa = \Vert A\Vert \Vert A^{+}\Vert \)。这提高了之前复杂度\( \widetilde{O}(\kappa _F^6 \kappa ^6/\epsilon ^4) \)的最佳算法[gily, Song and Tang, arXiv:2009.07268]。我们的算法基于随机Kaczmarz方法,这是随机梯度下降的一种特殊情况。我们还发现,当A是行稀疏时,该方法已经在\( \widetilde{O}(\kappa _F^2) \)时间内返回近似解\( {\bf x} \),而当A存储在QRAM数据结构中时,已知的最佳量子算法在\( \widetilde{O}(\kappa _F) \)时间内返回\( | {\bf x} \rangle \)。因此,假设访问QRAM并且如果a是行稀疏的,基于当前量子算法的加速是二次的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信