Transitioning conditional probability to discriminative classifier over inductive reasoning

Peng Mei, Fuquan Zhang, Lin Xu, Hongyong Leng, Lei Chen, Guo Liu
{"title":"Transitioning conditional probability to discriminative classifier over inductive reasoning","authors":"Peng Mei, Fuquan Zhang, Lin Xu, Hongyong Leng, Lei Chen, Guo Liu","doi":"10.1109/ICAWST.2017.8256510","DOIUrl":null,"url":null,"abstract":"Overcome context-independent probabilities based reasoning, with decomposition of categories and predicates into features as non-stable predicates. With distinction between generative classifier and discriminative classifier, we purpose to use some discriminative classifiers such as dual-form perceptron and kernelized support vector machine to improve to result of reasoning process. With capability of dual-form perceptron and kernelized support vector machine, finding linear or non-linear decision boundary for similarity-like supporting predicate for reasoning process.","PeriodicalId":378618,"journal":{"name":"2017 IEEE 8th International Conference on Awareness Science and Technology (iCAST)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 8th International Conference on Awareness Science and Technology (iCAST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAWST.2017.8256510","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Overcome context-independent probabilities based reasoning, with decomposition of categories and predicates into features as non-stable predicates. With distinction between generative classifier and discriminative classifier, we purpose to use some discriminative classifiers such as dual-form perceptron and kernelized support vector machine to improve to result of reasoning process. With capability of dual-form perceptron and kernelized support vector machine, finding linear or non-linear decision boundary for similarity-like supporting predicate for reasoning process.
将条件概率转换为判别分类器
克服基于上下文无关概率的推理,将类别和谓词分解为非稳定谓词的特征。在区分生成分类器和判别分类器的基础上,利用双形式感知器和核支持向量机等判别分类器改进推理过程的结果。利用双形式感知器和核支持向量机的能力,为推理过程寻找类相似支持谓词的线性或非线性决策边界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信