Shift-Invariant Structure-Imposed Convolutional Neural Networks for Direction of Arrival Estimation

K. Adhikari
{"title":"Shift-Invariant Structure-Imposed Convolutional Neural Networks for Direction of Arrival Estimation","authors":"K. Adhikari","doi":"10.1109/aiiot54504.2022.9817278","DOIUrl":null,"url":null,"abstract":"This paper frames the estimation of directions of arrival of plane waves impinging on an array of sensors as a classification problem using convolutional neural networks (CNNs). We propose a methodology to impose the shift-invariant structure inherent in data to CNNs. We use several methods to pre-process the data collected from sensor arrays and feed the pre-processed data as inputs to CNNs. For all CNNs, data sets corresponding to different signal-to-noise ratio (SNR) levels are generated. The data sets associated with the lowest SNR level are used for training while the other data sets are used for validation. Comparison of the accuracy of the shift-invariant structure-imposed CNNs with those of CNNs that are based on raw data, sample covariance matrices, and principal eigenvectors is provided. The simulations show that shift-invariant structure can be efficiently and most accurately imposed using the optimal signal subspace basis estimates as CNN inputs.","PeriodicalId":409264,"journal":{"name":"2022 IEEE World AI IoT Congress (AIIoT)","volume":"72 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE World AI IoT Congress (AIIoT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/aiiot54504.2022.9817278","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

This paper frames the estimation of directions of arrival of plane waves impinging on an array of sensors as a classification problem using convolutional neural networks (CNNs). We propose a methodology to impose the shift-invariant structure inherent in data to CNNs. We use several methods to pre-process the data collected from sensor arrays and feed the pre-processed data as inputs to CNNs. For all CNNs, data sets corresponding to different signal-to-noise ratio (SNR) levels are generated. The data sets associated with the lowest SNR level are used for training while the other data sets are used for validation. Comparison of the accuracy of the shift-invariant structure-imposed CNNs with those of CNNs that are based on raw data, sample covariance matrices, and principal eigenvectors is provided. The simulations show that shift-invariant structure can be efficiently and most accurately imposed using the optimal signal subspace basis estimates as CNN inputs.
基于移位不变结构的卷积神经网络到达方向估计
本文利用卷积神经网络(convolutional neural networks, cnn)将平面波的到达方向估计作为一个分类问题。我们提出了一种将数据固有的移位不变结构强加到cnn的方法。我们使用几种方法对从传感器阵列收集的数据进行预处理,并将预处理后的数据作为cnn的输入。对于所有cnn,都会生成不同信噪比(SNR)水平对应的数据集。与最低信噪比水平相关的数据集用于训练,而其他数据集用于验证。将移位不变结构强加cnn与基于原始数据、样本协方差矩阵和主特征向量的cnn的精度进行了比较。仿真结果表明,将最优信号子空间基估计作为CNN输入,可以有效且最准确地施加移不变结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信