Blind source separation based on moments matching

F. Ghassemi, H. Amindavar
{"title":"Blind source separation based on moments matching","authors":"F. Ghassemi, H. Amindavar","doi":"10.1109/ISSPA.2005.1580973","DOIUrl":null,"url":null,"abstract":"The Blind Source Separation (BSS) is a fundamental and challenging problem in signal processing. A new method based on the fractional moments and simulated annealing is presented in this paper. Fractional moments are used as a new measure of separation criterion contrary to the traditional integer moments. This is inspired by the fact that fractional moments lead to an enhanced estimation of the probability density function (PDF). Simulated Annealing (SA) is selected as the optimization algorithm to avoid being trapped into local minima. Simulation results validate the applicability of the new strategy for BSS .","PeriodicalId":385337,"journal":{"name":"Proceedings of the Eighth International Symposium on Signal Processing and Its Applications, 2005.","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Eighth International Symposium on Signal Processing and Its Applications, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSPA.2005.1580973","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The Blind Source Separation (BSS) is a fundamental and challenging problem in signal processing. A new method based on the fractional moments and simulated annealing is presented in this paper. Fractional moments are used as a new measure of separation criterion contrary to the traditional integer moments. This is inspired by the fact that fractional moments lead to an enhanced estimation of the probability density function (PDF). Simulated Annealing (SA) is selected as the optimization algorithm to avoid being trapped into local minima. Simulation results validate the applicability of the new strategy for BSS .
基于矩匹配的盲源分离
盲源分离(BSS)是信号处理领域的一个基础性和挑战性问题。本文提出了一种基于分数阶矩和模拟退火的新方法。相对于传统的整数矩,采用分数矩作为一种新的分离准则。这是受到分数矩导致概率密度函数(PDF)的增强估计这一事实的启发。为了避免陷入局部极小值,选择模拟退火算法作为优化算法。仿真结果验证了新策略在BSS中的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信