An Efficient Scheme for the Generation of Ordered Trees in Constant Amortized Time

V. Parque, T. Miyashita
{"title":"An Efficient Scheme for the Generation of Ordered Trees in Constant Amortized Time","authors":"V. Parque, T. Miyashita","doi":"10.1109/IMCOM51814.2021.9377349","DOIUrl":null,"url":null,"abstract":"Trees are useful entities allowing to model data structures and hierarchical relationships in networked decision systems ubiquitously. An ordered tree is a rooted tree where the order of the subtrees (children) of a node is significant. In combinatorial optimization, generating ordered trees is relevant to evaluate candidate combinatorial objects. In this paper, we present an algebraic scheme to generate ordered trees with $n$ vertices with utmost efficiency; whereby our approach uses $O$ (n) space and $O$ (1) time in average per tree. Our computational studies have shown the feasibility and efficiency to generate ordered trees in constant time in average, in about one tenth of a millisecond per ordered tree. Due to the 1–1 bijective nature to other combinatorial classes, our approach is favorable to study the generation of binary trees with $n$ external nodes, trees with $n$ nodes, legal sequences of $n$ pairs of parentheses, triangulated n-gons, gambler's sequences and lattice paths. We believe our scheme may find its use in devising algorithms for planning and combinatorial optimization involving Catalan numbers.","PeriodicalId":275121,"journal":{"name":"2021 15th International Conference on Ubiquitous Information Management and Communication (IMCOM)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 15th International Conference on Ubiquitous Information Management and Communication (IMCOM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IMCOM51814.2021.9377349","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Trees are useful entities allowing to model data structures and hierarchical relationships in networked decision systems ubiquitously. An ordered tree is a rooted tree where the order of the subtrees (children) of a node is significant. In combinatorial optimization, generating ordered trees is relevant to evaluate candidate combinatorial objects. In this paper, we present an algebraic scheme to generate ordered trees with $n$ vertices with utmost efficiency; whereby our approach uses $O$ (n) space and $O$ (1) time in average per tree. Our computational studies have shown the feasibility and efficiency to generate ordered trees in constant time in average, in about one tenth of a millisecond per ordered tree. Due to the 1–1 bijective nature to other combinatorial classes, our approach is favorable to study the generation of binary trees with $n$ external nodes, trees with $n$ nodes, legal sequences of $n$ pairs of parentheses, triangulated n-gons, gambler's sequences and lattice paths. We believe our scheme may find its use in devising algorithms for planning and combinatorial optimization involving Catalan numbers.
常数平摊时间内有序树生成的一种有效方法
树是一种有用的实体,它允许对网络决策系统中无处不在的数据结构和层次关系进行建模。有序树是一棵有根的树,其中节点的子树(子树)的顺序是重要的。在组合优化中,有序树的生成关系到候选组合对象的求值。在本文中,我们提出了一种最高效地生成有$n$顶点的有序树的代数方案;因此,我们的方法平均每棵树使用$O$ (n)空间和$O$(1)时间。我们的计算研究表明,平均在常数时间内生成有序树的可行性和效率,每棵有序树大约需要十分之一毫秒。由于对其他组合类的1-1双射性质,我们的方法有利于研究具有$n$外部节点的二叉树,具有$n$节点的树,$n$对括号的合法序列,三角化n-gon,赌徒序列和格路径的生成。我们相信我们的方案可以在设计涉及加泰罗尼亚数字的规划和组合优化的算法中找到它的用途。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信