GReMLIN: A Graph Mining Strategy to Infer Protein-Ligand Interaction Patterns

C. A. Santana, F. Cerqueira, C. H. Silveira, A. V. Fassio, R. Minardi, S. Silveira
{"title":"GReMLIN: A Graph Mining Strategy to Infer Protein-Ligand Interaction Patterns","authors":"C. A. Santana, F. Cerqueira, C. H. Silveira, A. V. Fassio, R. Minardi, S. Silveira","doi":"10.1109/BIBE.2016.48","DOIUrl":null,"url":null,"abstract":"Interactions between proteins and ligands are relevant in many biological processes. In the last years, such interactions have gained even more attention as the comprehension of protein-ligand molecular recognition is an important step to ligand prediction, target identificantion, and drug design, among others. This article presents GReMLIN (Graph Mining strategy to infer protein-Ligand INteraction patterns), a strategy to search for conserved protein-ligand interactions in a set of related proteins, based on frequent subgraph mining, that is able to perceive structural arrangements relevant for protein-ligand interaction. When compared to experimentally determined interactions, our in silico strategy was able to find many of relevant binding site residues/atoms for CDK2 and active site residues/atoms for Ricin.","PeriodicalId":377504,"journal":{"name":"2016 IEEE 16th International Conference on Bioinformatics and Bioengineering (BIBE)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 16th International Conference on Bioinformatics and Bioengineering (BIBE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBE.2016.48","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Interactions between proteins and ligands are relevant in many biological processes. In the last years, such interactions have gained even more attention as the comprehension of protein-ligand molecular recognition is an important step to ligand prediction, target identificantion, and drug design, among others. This article presents GReMLIN (Graph Mining strategy to infer protein-Ligand INteraction patterns), a strategy to search for conserved protein-ligand interactions in a set of related proteins, based on frequent subgraph mining, that is able to perceive structural arrangements relevant for protein-ligand interaction. When compared to experimentally determined interactions, our in silico strategy was able to find many of relevant binding site residues/atoms for CDK2 and active site residues/atoms for Ricin.
GReMLIN:一种推断蛋白质-配体相互作用模式的图挖掘策略
蛋白质和配体之间的相互作用与许多生物过程有关。在过去的几年里,这种相互作用获得了更多的关注,因为理解蛋白质-配体分子识别是配体预测、靶标识别和药物设计等的重要一步。本文介绍了GReMLIN (Graph Mining strategy to infer protein-Ligand INteraction patterns),这是一种基于频繁子图挖掘的策略,用于在一组相关蛋白质中搜索保守的蛋白质-配体相互作用,能够感知与蛋白质-配体相互作用相关的结构安排。与实验确定的相互作用相比,我们的芯片策略能够找到CDK2的许多相关结合位点残基/原子和蓖麻毒素的活性位点残基/原子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信