C. A. Santana, F. Cerqueira, C. H. Silveira, A. V. Fassio, R. Minardi, S. Silveira
{"title":"GReMLIN: A Graph Mining Strategy to Infer Protein-Ligand Interaction Patterns","authors":"C. A. Santana, F. Cerqueira, C. H. Silveira, A. V. Fassio, R. Minardi, S. Silveira","doi":"10.1109/BIBE.2016.48","DOIUrl":null,"url":null,"abstract":"Interactions between proteins and ligands are relevant in many biological processes. In the last years, such interactions have gained even more attention as the comprehension of protein-ligand molecular recognition is an important step to ligand prediction, target identificantion, and drug design, among others. This article presents GReMLIN (Graph Mining strategy to infer protein-Ligand INteraction patterns), a strategy to search for conserved protein-ligand interactions in a set of related proteins, based on frequent subgraph mining, that is able to perceive structural arrangements relevant for protein-ligand interaction. When compared to experimentally determined interactions, our in silico strategy was able to find many of relevant binding site residues/atoms for CDK2 and active site residues/atoms for Ricin.","PeriodicalId":377504,"journal":{"name":"2016 IEEE 16th International Conference on Bioinformatics and Bioengineering (BIBE)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 16th International Conference on Bioinformatics and Bioengineering (BIBE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBE.2016.48","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
Interactions between proteins and ligands are relevant in many biological processes. In the last years, such interactions have gained even more attention as the comprehension of protein-ligand molecular recognition is an important step to ligand prediction, target identificantion, and drug design, among others. This article presents GReMLIN (Graph Mining strategy to infer protein-Ligand INteraction patterns), a strategy to search for conserved protein-ligand interactions in a set of related proteins, based on frequent subgraph mining, that is able to perceive structural arrangements relevant for protein-ligand interaction. When compared to experimentally determined interactions, our in silico strategy was able to find many of relevant binding site residues/atoms for CDK2 and active site residues/atoms for Ricin.