A Hybrid Model of Kalman-ARIMA-LSTM for Flow Prediction of Mine air Compressors

Lin Yuzhou, Wu Xiaofei, Lin Mao, Lu Chao, Wan Hu, Chen Yongqiang, Sun Jingbo
{"title":"A Hybrid Model of Kalman-ARIMA-LSTM for Flow Prediction of Mine air Compressors","authors":"Lin Yuzhou, Wu Xiaofei, Lin Mao, Lu Chao, Wan Hu, Chen Yongqiang, Sun Jingbo","doi":"10.1109/ICCWAMTIP56608.2022.10016570","DOIUrl":null,"url":null,"abstract":"As an essential power system in coal mine production, the accidental failure or downtime of mine air compressors will cause production stagnation and economic losses. The accurate and reliable flow prediction of air compressors plays a crucial role in fault diagnosis for air compressors. In this paper, we propose a hybrid model combining the Kalman filter, the autoregressive integrated moving average and the long short-term memory to predict the flow data of mine air compressors. The noise existing in the flow data of air compressors can be reduced by the Kalman filter so that the sequence can be recognized by the autoregressive integrated moving average model. Then, the long short-term memory neural network will be utilized to transform the linear data to nonlinear for conforming to the actual flow situation of air compressors. The prediction results show that the hybrid model has a good performance in forecasting the flow data of mine air compressors.","PeriodicalId":159508,"journal":{"name":"2022 19th International Computer Conference on Wavelet Active Media Technology and Information Processing (ICCWAMTIP)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 19th International Computer Conference on Wavelet Active Media Technology and Information Processing (ICCWAMTIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCWAMTIP56608.2022.10016570","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

As an essential power system in coal mine production, the accidental failure or downtime of mine air compressors will cause production stagnation and economic losses. The accurate and reliable flow prediction of air compressors plays a crucial role in fault diagnosis for air compressors. In this paper, we propose a hybrid model combining the Kalman filter, the autoregressive integrated moving average and the long short-term memory to predict the flow data of mine air compressors. The noise existing in the flow data of air compressors can be reduced by the Kalman filter so that the sequence can be recognized by the autoregressive integrated moving average model. Then, the long short-term memory neural network will be utilized to transform the linear data to nonlinear for conforming to the actual flow situation of air compressors. The prediction results show that the hybrid model has a good performance in forecasting the flow data of mine air compressors.
矿井空压机流量预测的Kalman-ARIMA-LSTM混合模型
矿井空压机作为煤矿生产中必不可少的动力系统,一旦发生意外故障或停机,将造成生产停滞和经济损失。准确、可靠的空压机流量预测对空压机故障诊断起着至关重要的作用。本文提出了一种结合卡尔曼滤波、自回归积分移动平均和长短期记忆的混合模型来预测矿井空压机的流量数据。利用卡尔曼滤波可以去除空压机流量数据中的噪声,使序列能够被自回归积分移动平均模型识别。然后利用长短期记忆神经网络将线性数据转化为符合空压机实际流动情况的非线性数据。预测结果表明,该混合模型对矿井空压机流量数据有较好的预测效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信