The Object at Hand: Automated Editing for Mixed Reality Video Guidance from Hand-Object Interactions

Yao Lu, Walterio W. Mayol-Cuevas
{"title":"The Object at Hand: Automated Editing for Mixed Reality Video Guidance from Hand-Object Interactions","authors":"Yao Lu, Walterio W. Mayol-Cuevas","doi":"10.1109/ismar52148.2021.00023","DOIUrl":null,"url":null,"abstract":"In this paper, we concern with the problem of how to automatically extract the steps that compose real-life hand activities. This is a key competence towards processing, monitoring and providing video guidance in Mixed Reality systems. We use egocentric vision to observe hand-object interactions in real-world tasks and automatically decompose a video into its constituent steps. Our approach combines hand-object interaction (HOI) detection, object similarity measurement and a finite state machine (FSM) representation to automatically edit videos into steps. We use a combination of Convolutional Neural Networks (CNNs) and the FSM to discover, edit cuts and merge segments while observing real hand activities. We evaluate quantitatively and qualitatively our algorithm on two datasets: the GTEA [19], and a new dataset we introduce for Chinese Tea making. Results show our method is able to segment hand-object interaction videos into key step segments with high levels of precision.","PeriodicalId":395413,"journal":{"name":"2021 IEEE International Symposium on Mixed and Augmented Reality (ISMAR)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Symposium on Mixed and Augmented Reality (ISMAR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ismar52148.2021.00023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this paper, we concern with the problem of how to automatically extract the steps that compose real-life hand activities. This is a key competence towards processing, monitoring and providing video guidance in Mixed Reality systems. We use egocentric vision to observe hand-object interactions in real-world tasks and automatically decompose a video into its constituent steps. Our approach combines hand-object interaction (HOI) detection, object similarity measurement and a finite state machine (FSM) representation to automatically edit videos into steps. We use a combination of Convolutional Neural Networks (CNNs) and the FSM to discover, edit cuts and merge segments while observing real hand activities. We evaluate quantitatively and qualitatively our algorithm on two datasets: the GTEA [19], and a new dataset we introduce for Chinese Tea making. Results show our method is able to segment hand-object interaction videos into key step segments with high levels of precision.
手边的对象:手-对象交互的混合现实视频指导的自动编辑
在本文中,我们关注的问题是如何自动提取组成现实生活中的手部活动的步骤。这是在混合现实系统中处理、监控和提供视频指导的关键能力。我们使用自我中心视觉来观察现实世界任务中的手-物交互,并自动将视频分解为其组成步骤。我们的方法结合了手-对象交互(HOI)检测、对象相似性测量和有限状态机(FSM)表示,自动将视频编辑成步骤。我们使用卷积神经网络(cnn)和FSM的组合来发现,编辑切割和合并片段,同时观察真实的手部活动。我们在两个数据集上定量和定性地评估了我们的算法:GTEA[19]和我们引入的中国制茶新数据集。结果表明,我们的方法能够以较高的精度将手-物交互视频分割成关键的步长片段。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信