A Simulation Of Final Stop Consonants In Speech Perception Using The Bicameral Neural Network Model

M. Stinson, D. Foster
{"title":"A Simulation Of Final Stop Consonants In Speech Perception Using The Bicameral Neural Network Model","authors":"M. Stinson, D. Foster","doi":"10.1145/99633.99642","DOIUrl":null,"url":null,"abstract":"This paper demonstrates the integration of contextual information in a neural network for speech perception. Neural networks have been unable to integrate such information successfully because they cannot implement conditional rule structures. The Bicameral neural network employs an asynchronous controller which allows conditional rules to choose neurons for update rather than updating them randomly. The Bicameral model is applied to the perception of word-final plosives, an ongoing problem for machine recognition of speech.","PeriodicalId":399502,"journal":{"name":"1990 Eastern Multiconference. Record of Proceedings. The 23rd Annual Simulation Symposium","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1990-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"1990 Eastern Multiconference. Record of Proceedings. The 23rd Annual Simulation Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/99633.99642","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This paper demonstrates the integration of contextual information in a neural network for speech perception. Neural networks have been unable to integrate such information successfully because they cannot implement conditional rule structures. The Bicameral neural network employs an asynchronous controller which allows conditional rules to choose neurons for update rather than updating them randomly. The Bicameral model is applied to the perception of word-final plosives, an ongoing problem for machine recognition of speech.
用二元神经网络模型模拟语音感知中的末段辅音
本文演示了上下文信息在语音感知神经网络中的集成。神经网络无法成功地整合这些信息,因为它们不能实现条件规则结构。双向神经网络采用异步控制器,允许条件规则选择神经元进行更新,而不是随机更新。将二元模型应用于词尾爆破词的感知,这是机器语音识别的一个长期存在的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信