Monocular Supervised Metric Distance Estimation for Autonomous Driving Applications

Yury Davydov, Wen-Hui Chen, Yu-Chen Lin
{"title":"Monocular Supervised Metric Distance Estimation for Autonomous Driving Applications","authors":"Yury Davydov, Wen-Hui Chen, Yu-Chen Lin","doi":"10.23919/ICCAS55662.2022.10003962","DOIUrl":null,"url":null,"abstract":"The task of monocular distance estimation is a major area of research in the computer vision field. Especially relevant this task is to the autonomous driving applications, where robustness and accuracy of the distance estimation significantly affect driving safety. In this paper we propose a simple, fast and efficient deep learning model capable of extracting distance information for a detected object from monocular images. The model is trained and tested on the KITTI benchmark and compared to the Monodepth2 model. The conducted experiments show that the proposed convolutional neural network architecture outperforms Monodepth2 by 11% on average according to the weighted average mean absolute error.","PeriodicalId":129856,"journal":{"name":"2022 22nd International Conference on Control, Automation and Systems (ICCAS)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 22nd International Conference on Control, Automation and Systems (ICCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ICCAS55662.2022.10003962","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The task of monocular distance estimation is a major area of research in the computer vision field. Especially relevant this task is to the autonomous driving applications, where robustness and accuracy of the distance estimation significantly affect driving safety. In this paper we propose a simple, fast and efficient deep learning model capable of extracting distance information for a detected object from monocular images. The model is trained and tested on the KITTI benchmark and compared to the Monodepth2 model. The conducted experiments show that the proposed convolutional neural network architecture outperforms Monodepth2 by 11% on average according to the weighted average mean absolute error.
自动驾驶应用的单目监督度量距离估计
单目距离估计是计算机视觉领域的一个重要研究方向。这项任务与自动驾驶应用特别相关,距离估计的鲁棒性和准确性显著影响驾驶安全。本文提出了一种简单、快速、高效的深度学习模型,能够从单眼图像中提取被检测物体的距离信息。该模型在KITTI基准上进行了训练和测试,并与Monodepth2模型进行了比较。实验结果表明,根据加权平均绝对误差,本文提出的卷积神经网络架构比Monodepth2平均高出11%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信