An Efficient Feature Subset Selection for Improved Stability Using T-Statistic

R. Karthika
{"title":"An Efficient Feature Subset Selection for Improved Stability Using T-Statistic","authors":"R. Karthika","doi":"10.1109/ICRTCCM.2017.39","DOIUrl":null,"url":null,"abstract":"Large amounts of data gets accumulated and stored in the databases in day to day life that are high dimensional in nature. The data mining task is used to excavate the useful information from the high dimensional data. To classify or cluster the high dimensional data, the dimensionality of the data needs to be reduced. Feature selection is used to select the features that are relevant to the analysis and discards the features that are not relevant as well as redundant. There are so many feature subset selection algorithms available. In this paper, we evaluate the stability of the subset of the features selected using a measure called T-Statistic and improve the prediction accuracy of the classifier using Booster.","PeriodicalId":134897,"journal":{"name":"2017 Second International Conference on Recent Trends and Challenges in Computational Models (ICRTCCM)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Second International Conference on Recent Trends and Challenges in Computational Models (ICRTCCM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRTCCM.2017.39","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Large amounts of data gets accumulated and stored in the databases in day to day life that are high dimensional in nature. The data mining task is used to excavate the useful information from the high dimensional data. To classify or cluster the high dimensional data, the dimensionality of the data needs to be reduced. Feature selection is used to select the features that are relevant to the analysis and discards the features that are not relevant as well as redundant. There are so many feature subset selection algorithms available. In this paper, we evaluate the stability of the subset of the features selected using a measure called T-Statistic and improve the prediction accuracy of the classifier using Booster.
基于t统计量的特征子集选择提高稳定性
在日常生活中,大量的数据被积累并存储在数据库中,这些数据本质上是高维的。数据挖掘任务用于从高维数据中挖掘有用信息。为了对高维数据进行分类或聚类,需要降低数据的维数。特征选择用于选择与分析相关的特征,丢弃不相关和冗余的特征。有很多特征子集选择算法可用。在本文中,我们使用一种称为T-Statistic的度量来评估所选特征子集的稳定性,并使用Booster来提高分类器的预测精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信