An analyst-adaptive approach to Focused Crawlers

R. Zunino, F. Bisio, C. Peretti, Roberto Surlinelli, Eugenio Scillia, A. Ottaviano, Fabio Sangiacomo
{"title":"An analyst-adaptive approach to Focused Crawlers","authors":"R. Zunino, F. Bisio, C. Peretti, Roberto Surlinelli, Eugenio Scillia, A. Ottaviano, Fabio Sangiacomo","doi":"10.1145/2492517.2500328","DOIUrl":null,"url":null,"abstract":"The paper presents a general methodology to implement a flexible Focused Crawler for investigation purposes, monitoring, and Open Source Intelligence (OSINT). The resulting tool is specifically aimed to fit the operational requirements of law-enforcement agencies and intelligence analyst. The architecture of the semantic Focused Crawler features static flexibility in the definition of desired concepts, used metrics, and crawling strategy; in addition, the method is capable to learn (and adapt to) the analyst's expectations at runtime. The user may instruct the crawler with a binary feedback (yes/no) about the current performance of the surfing process, and the crawling engine progressively refines the expected targets accordingly. The method implementation is based on an existing text-mining environment, integrated with semantic networks and ontologies. Experimental results witness the effectiveness of the adaptive mechanism.","PeriodicalId":442230,"journal":{"name":"2013 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM 2013)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM 2013)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2492517.2500328","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

The paper presents a general methodology to implement a flexible Focused Crawler for investigation purposes, monitoring, and Open Source Intelligence (OSINT). The resulting tool is specifically aimed to fit the operational requirements of law-enforcement agencies and intelligence analyst. The architecture of the semantic Focused Crawler features static flexibility in the definition of desired concepts, used metrics, and crawling strategy; in addition, the method is capable to learn (and adapt to) the analyst's expectations at runtime. The user may instruct the crawler with a binary feedback (yes/no) about the current performance of the surfing process, and the crawling engine progressively refines the expected targets accordingly. The method implementation is based on an existing text-mining environment, integrated with semantic networks and ontologies. Experimental results witness the effectiveness of the adaptive mechanism.
聚焦爬虫的分析自适应方法
本文提出了一种实现灵活的聚焦爬虫的通用方法,用于调查、监控和开源情报(OSINT)。由此产生的工具专门用于满足执法机构和情报分析人员的操作需求。语义聚焦爬虫的架构在定义所需概念、使用的度量和爬虫策略方面具有静态灵活性;此外,该方法能够在运行时学习(并适应)分析人员的期望。用户可以用二进制反馈(是/否)指示爬行器关于浏览过程的当前性能,爬行引擎相应地逐步细化预期目标。该方法的实现基于现有的文本挖掘环境,集成了语义网络和本体。实验结果证明了该自适应机制的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信