A. Leow, M. Chiang, H. Protas, P. Thompson, L. Vese, Henry S. C. Huang
{"title":"Linear and non-linear geometric object matching with implicit representation","authors":"A. Leow, M. Chiang, H. Protas, P. Thompson, L. Vese, Henry S. C. Huang","doi":"10.1109/ICPR.2004.1334627","DOIUrl":null,"url":null,"abstract":"This paper deals with the matching of geometric objects including points, curves, surfaces, and subvolumes using implicit object representations in both linear and non-linear settings. This framework can be applied to feature-based non-linear image warping in biomedical imaging with the deformation constrained to be one-to-one, onto, and diffeomorphic. Moreover, a theoretical connection is established between the well known Hausdorff metric and the framework proposed in this paper. A general strategy for matching geometric objects in both 2D and 3D is discussed. The corresponding Euler-Lagrange equations are presented and gradient descent method is employed to solve the time dependent partial differential equations.","PeriodicalId":335842,"journal":{"name":"Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004.","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPR.2004.1334627","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9
Abstract
This paper deals with the matching of geometric objects including points, curves, surfaces, and subvolumes using implicit object representations in both linear and non-linear settings. This framework can be applied to feature-based non-linear image warping in biomedical imaging with the deformation constrained to be one-to-one, onto, and diffeomorphic. Moreover, a theoretical connection is established between the well known Hausdorff metric and the framework proposed in this paper. A general strategy for matching geometric objects in both 2D and 3D is discussed. The corresponding Euler-Lagrange equations are presented and gradient descent method is employed to solve the time dependent partial differential equations.