Fast-join: An efficient method for fuzzy token matching based string similarity join

Jiannan Wang, Guoliang Li, Jianhua Feng
{"title":"Fast-join: An efficient method for fuzzy token matching based string similarity join","authors":"Jiannan Wang, Guoliang Li, Jianhua Feng","doi":"10.1109/ICDE.2011.5767865","DOIUrl":null,"url":null,"abstract":"String similarity join that finds similar string pairs between two string sets is an essential operation in many applications, and has attracted significant attention recently in the database community. A significant challenge in similarity join is to implement an effective fuzzy match operation to find all similar string pairs which may not match exactly. In this paper, we propose a new similarity metrics, called “fuzzy token matching based similarity”, which extends token-based similarity functions (e.g., Jaccard similarity and Cosine similarity) by allowing fuzzy match between two tokens. We study the problem of similarity join using this new similarity metrics and present a signature-based method to address this problem. We propose new signature schemes and develop effective pruning techniques to improve the performance. Experimental results show that our approach achieves high efficiency and result quality, and significantly outperforms state-of-the-art methods.","PeriodicalId":332374,"journal":{"name":"2011 IEEE 27th International Conference on Data Engineering","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"141","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE 27th International Conference on Data Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDE.2011.5767865","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 141

Abstract

String similarity join that finds similar string pairs between two string sets is an essential operation in many applications, and has attracted significant attention recently in the database community. A significant challenge in similarity join is to implement an effective fuzzy match operation to find all similar string pairs which may not match exactly. In this paper, we propose a new similarity metrics, called “fuzzy token matching based similarity”, which extends token-based similarity functions (e.g., Jaccard similarity and Cosine similarity) by allowing fuzzy match between two tokens. We study the problem of similarity join using this new similarity metrics and present a signature-based method to address this problem. We propose new signature schemes and develop effective pruning techniques to improve the performance. Experimental results show that our approach achieves high efficiency and result quality, and significantly outperforms state-of-the-art methods.
快速连接:一种基于模糊标记匹配的字符串相似连接的有效方法
字符串相似连接(在两个字符串集之间找到相似的字符串对)是许多应用程序中的一项基本操作,最近在数据库社区引起了极大的关注。在相似性连接中,一个重要的挑战是如何实现一种有效的模糊匹配操作来找到所有可能不完全匹配的相似字符串对。在本文中,我们提出了一种新的相似性度量,称为“基于模糊标记匹配的相似性”,它通过允许两个标记之间的模糊匹配来扩展基于标记的相似性函数(例如,Jaccard相似性和余弦相似性)。我们使用这种新的相似度度量来研究相似度连接问题,并提出了一种基于签名的方法来解决这个问题。我们提出了新的签名方案,并开发了有效的修剪技术来提高性能。实验结果表明,该方法具有较高的效率和结果质量,明显优于现有的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信