Visual Relationship Detection With A Deep Convolutional Relationship Network

Yao Peng, D. Chen, Lanfen Lin
{"title":"Visual Relationship Detection With A Deep Convolutional Relationship Network","authors":"Yao Peng, D. Chen, Lanfen Lin","doi":"10.1109/ICIP40778.2020.9190642","DOIUrl":null,"url":null,"abstract":"Visual relationship is crucial to image understanding and can be applied to many tasks (e.g., image caption and visual question answering). Despite great progress on many vision tasks, relationship detection remains a challenging problem due to the complexity of modeling the widely spread and imbalanced distribution of {subject – predicate – object} triplets. In this paper, we propose a new framework to capture the relative positions and sizes of the subject and object in the feature map and add a new branch to filter out some object pairs that are unlikely to have relationships. In addition, an activation function is trained to increase the probability of some feature maps given an object pair. Experiments on two large datasets, the Visual Relationship Detection (VRD) and Visual Genome (VG) datasets, demonstrate the superiority of our new approach over state-of-the-art methods. Further, ablation study verifies the effectiveness of our techniques.","PeriodicalId":405734,"journal":{"name":"2020 IEEE International Conference on Image Processing (ICIP)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP40778.2020.9190642","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Visual relationship is crucial to image understanding and can be applied to many tasks (e.g., image caption and visual question answering). Despite great progress on many vision tasks, relationship detection remains a challenging problem due to the complexity of modeling the widely spread and imbalanced distribution of {subject – predicate – object} triplets. In this paper, we propose a new framework to capture the relative positions and sizes of the subject and object in the feature map and add a new branch to filter out some object pairs that are unlikely to have relationships. In addition, an activation function is trained to increase the probability of some feature maps given an object pair. Experiments on two large datasets, the Visual Relationship Detection (VRD) and Visual Genome (VG) datasets, demonstrate the superiority of our new approach over state-of-the-art methods. Further, ablation study verifies the effectiveness of our techniques.
基于深度卷积关系网络的视觉关系检测
视觉关系对图像理解至关重要,可以应用于许多任务(例如,图像标题和视觉问答)。尽管在许多视觉任务上取得了很大进展,但由于对{主语-谓语-客体}三元组的广泛分布和不平衡建模的复杂性,关系检测仍然是一个具有挑战性的问题。在本文中,我们提出了一个新的框架来捕获主题和对象在特征映射中的相对位置和大小,并增加了一个新的分支来过滤掉一些不太可能有关系的对象对。此外,还训练了一个激活函数来增加给定对象对的某些特征映射的概率。在两个大型数据集,视觉关系检测(VRD)和视觉基因组(VG)数据集上的实验表明,我们的新方法优于最先进的方法。烧蚀实验进一步验证了该技术的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信