{"title":"Degree centrality and eigenvector centrality in twitter","authors":"W. Maharani, Adiwijaya, A. A. Gozali","doi":"10.1109/TSSA.2014.7065911","DOIUrl":null,"url":null,"abstract":"Network formed between users in a social media can be used to encourage information spreading among them. This research applied Social Network Analysis which further can be used to social media marketing to improve the marketing process effectively. Based on previous research, information spreading speed among the social media is affected by the users' activity connection which can be represented in centrality value. The centrality value itself is very affected by the graph structure and weights. This research applied degree and eigenvector centrality to observe the effect of centrality value for twitter data. The result shows that there is significant difference among 10 most influential users. This result will be used for the future research that will be focused in small and medium enterprise (SME) twitter data.","PeriodicalId":169550,"journal":{"name":"2014 8th International Conference on Telecommunication Systems Services and Applications (TSSA)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"48","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 8th International Conference on Telecommunication Systems Services and Applications (TSSA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TSSA.2014.7065911","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 48
Abstract
Network formed between users in a social media can be used to encourage information spreading among them. This research applied Social Network Analysis which further can be used to social media marketing to improve the marketing process effectively. Based on previous research, information spreading speed among the social media is affected by the users' activity connection which can be represented in centrality value. The centrality value itself is very affected by the graph structure and weights. This research applied degree and eigenvector centrality to observe the effect of centrality value for twitter data. The result shows that there is significant difference among 10 most influential users. This result will be used for the future research that will be focused in small and medium enterprise (SME) twitter data.