STUDY OF METHODS FOR MEASURING THE OPTICAL CHARACTERISTICS OF LOW-PRESSURE MERCURY LAMPS

I.I. Zheleznov
{"title":"STUDY OF METHODS FOR MEASURING THE OPTICAL CHARACTERISTICS OF LOW-PRESSURE MERCURY LAMPS","authors":"I.I. Zheleznov","doi":"10.25039/x48.2021.po29","DOIUrl":null,"url":null,"abstract":"Obtaining experimental data on the electrical and photometric parameters of low-pressure tubular amalgam lamps with a discharge in a mixture of mercury vapor and inert gases at high current densities of 0.5-1.2 A/cm2 with frequencies of tens of kilohertz is one of the key problems of modern metrology. Since a full-fledged study of the properties of experimental samples of mercury lamps is impossible without a reliable method of photometric measurements, and for ozone lamps such a technique, taking into account the features of the object of study, has not yet been proposed, its development and testing is the main task of this work. Based on the analysis of existing techniques, a technique for measuring the fluxes of the 185 and 254 nm lines of a low-pressure mercury lamp is proposed, taking into account the change in the nature of the spatial distribution of radiation during operation, without directly measuring the RIC. The method proposed by the author for measuring the fluxes of ozonizing and bactericidal radiation can be used as the basis for the development of an automated system for measuring parameters and monitoring the quality of gas-discharge UV radiation sources.","PeriodicalId":363368,"journal":{"name":"Proceedings of the Conference CIE 2021","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Conference CIE 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.25039/x48.2021.po29","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Obtaining experimental data on the electrical and photometric parameters of low-pressure tubular amalgam lamps with a discharge in a mixture of mercury vapor and inert gases at high current densities of 0.5-1.2 A/cm2 with frequencies of tens of kilohertz is one of the key problems of modern metrology. Since a full-fledged study of the properties of experimental samples of mercury lamps is impossible without a reliable method of photometric measurements, and for ozone lamps such a technique, taking into account the features of the object of study, has not yet been proposed, its development and testing is the main task of this work. Based on the analysis of existing techniques, a technique for measuring the fluxes of the 185 and 254 nm lines of a low-pressure mercury lamp is proposed, taking into account the change in the nature of the spatial distribution of radiation during operation, without directly measuring the RIC. The method proposed by the author for measuring the fluxes of ozonizing and bactericidal radiation can be used as the basis for the development of an automated system for measuring parameters and monitoring the quality of gas-discharge UV radiation sources.
低压汞灯光学特性测量方法的研究
获得低压管状汞合金灯的电学参数和光度参数的实验数据,在汞蒸气和惰性气体的混合物中放电,电流密度为0.5-1.2 a /cm2,频率为几十千赫兹,是现代计量的关键问题之一。由于没有可靠的光度测量方法,就不可能对汞灯实验样品的特性进行全面的研究,而对于臭氧灯来说,考虑到研究对象的特点,这种技术尚未提出,因此开发和测试是本工作的主要任务。在分析现有技术的基础上,提出了一种测量低压汞灯185和254 nm线通量的技术,该技术考虑了运行过程中辐射空间分布性质的变化,而不直接测量RIC。本文提出的臭氧和杀菌辐射通量的测量方法,可作为开发气体放电紫外线辐射源参数测量和质量监测自动化系统的基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信