Resolution of the Probabilistic Vector Machine Problem via Single Linear Program

Mihai Cimpoesu, Andrei Sucila, H. Luchian
{"title":"Resolution of the Probabilistic Vector Machine Problem via Single Linear Program","authors":"Mihai Cimpoesu, Andrei Sucila, H. Luchian","doi":"10.1109/SYNASC.2013.78","DOIUrl":null,"url":null,"abstract":"This paper presents a significantly improved version to a recently introduced hyperplane classifier, Probabilistic Vector Machine (PVM). The main goal is to provide a formulation which allows fast and robust resolution of the classification problem as approached by the PVM algorithm. The main result is the introduction of a single linear program (LP) form which avoids the iterative process initially introduced by PVM. This allows comparison to state of the art algorithms such as Least Squares Twin Support Vector Machines(LSTSVM) and Robust Twin Support Vector Machines (R-TSVM). The results prove that PVM is both highly competitive and stable.","PeriodicalId":293085,"journal":{"name":"2013 15th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 15th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SYNASC.2013.78","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a significantly improved version to a recently introduced hyperplane classifier, Probabilistic Vector Machine (PVM). The main goal is to provide a formulation which allows fast and robust resolution of the classification problem as approached by the PVM algorithm. The main result is the introduction of a single linear program (LP) form which avoids the iterative process initially introduced by PVM. This allows comparison to state of the art algorithms such as Least Squares Twin Support Vector Machines(LSTSVM) and Robust Twin Support Vector Machines (R-TSVM). The results prove that PVM is both highly competitive and stable.
用单线性程序求解概率向量机问题
本文提出了最近引入的超平面分类器概率向量机(PVM)的一个显著改进版本。主要目标是提供一个公式,该公式允许快速和鲁棒地解决PVM算法所接近的分类问题。主要结果是引入了单一线性规划(LP)形式,避免了PVM最初引入的迭代过程。这允许比较最先进的算法,如最小二乘双支持向量机(LSTSVM)和鲁棒双支持向量机(R-TSVM)。结果表明,PVM具有很强的竞争力和稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信