Distributions of angles in random packing on spheres

Tony Cai, Jianqing Fan, Tiefeng Jiang
{"title":"Distributions of angles in random packing on spheres","authors":"Tony Cai, Jianqing Fan, Tiefeng Jiang","doi":"10.5555/2567709.2567722","DOIUrl":null,"url":null,"abstract":"This paper studies the asymptotic behaviors of the pairwise angles among n randomly and uniformly distributed unit vectors in [Formula: see text] as the number of points n → ∞, while the dimension p is either fixed or growing with n. For both settings, we derive the limiting empirical distribution of the random angles and the limiting distributions of the extreme angles. The results reveal interesting differences in the two settings and provide a precise characterization of the folklore that \"all high-dimensional random vectors are almost always nearly orthogonal to each other\". Applications to statistics and machine learning and connections with some open problems in physics and mathematics are also discussed.","PeriodicalId":314696,"journal":{"name":"Journal of machine learning research : JMLR","volume":"14 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"164","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of machine learning research : JMLR","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5555/2567709.2567722","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 164

Abstract

This paper studies the asymptotic behaviors of the pairwise angles among n randomly and uniformly distributed unit vectors in [Formula: see text] as the number of points n → ∞, while the dimension p is either fixed or growing with n. For both settings, we derive the limiting empirical distribution of the random angles and the limiting distributions of the extreme angles. The results reveal interesting differences in the two settings and provide a precise characterization of the folklore that "all high-dimensional random vectors are almost always nearly orthogonal to each other". Applications to statistics and machine learning and connections with some open problems in physics and mathematics are also discussed.
球面上随机填料的角度分布
本文研究了[公式:见文]中n个随机均匀分布的单位向量间的成对角在点数n→∞时的渐近行为,当p维数为固定或随n增长时,我们分别导出了随机角的极限经验分布和极值角的极限分布。研究结果揭示了两种环境中有趣的差异,并提供了“所有高维随机向量几乎总是几乎彼此正交”的民间传说的精确特征。还讨论了统计学和机器学习的应用以及与物理和数学中一些开放问题的联系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信