{"title":"Modular rough fuzzy MLP: evolutionary design","authors":"Pabitra Mitra, S. Mitra, S. Pal","doi":"10.1109/ICCIMA.1999.798511","DOIUrl":null,"url":null,"abstract":"The article describes a way of designing a hybrid system for classification and rule generation, integrating rough set theory with a fuzzy MLP using an evolutionary algorithm. An l-class classification problem is split into l two-class problems. Crude subnetworks are initially obtained for each of these two-class problems via rough set theory. These subnetworks are then combined and the final network is evolved using a GA with restricted mutation operator which utilizes the knowledge of the modular structure already generated, for faster convergence.","PeriodicalId":110736,"journal":{"name":"Proceedings Third International Conference on Computational Intelligence and Multimedia Applications. ICCIMA'99 (Cat. No.PR00300)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Third International Conference on Computational Intelligence and Multimedia Applications. ICCIMA'99 (Cat. No.PR00300)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCIMA.1999.798511","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
The article describes a way of designing a hybrid system for classification and rule generation, integrating rough set theory with a fuzzy MLP using an evolutionary algorithm. An l-class classification problem is split into l two-class problems. Crude subnetworks are initially obtained for each of these two-class problems via rough set theory. These subnetworks are then combined and the final network is evolved using a GA with restricted mutation operator which utilizes the knowledge of the modular structure already generated, for faster convergence.