Saliency-Aware Privacy Protection in Augmented Reality Systems

Gautham Ramajayam, Tao Sun, C. C. Tan, Lannan Luo, Haibin Ling
{"title":"Saliency-Aware Privacy Protection in Augmented Reality Systems","authors":"Gautham Ramajayam, Tao Sun, C. C. Tan, Lannan Luo, Haibin Ling","doi":"10.1145/3597063.3597358","DOIUrl":null,"url":null,"abstract":"The augmented reality (AR) Metaverse environment combines the physical and virtual world together. Privacy is a major concern in AR since the cameras use to capture the physical world can also capture other images that may potentially violate user or by-stander privacy. Advances in deep learning to process images and videos have exacerbated such privacy risks. This paper presents a new technique to protect privacy in AR systems by combining the idea of visual saliency together with privacy-sensitive object detection. We show that our technique is able to provide additional context to a given image to better balance between privacy and overall usability of the system.","PeriodicalId":447264,"journal":{"name":"Proceedings of the First Workshop on Metaverse Systems and Applications","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the First Workshop on Metaverse Systems and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3597063.3597358","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The augmented reality (AR) Metaverse environment combines the physical and virtual world together. Privacy is a major concern in AR since the cameras use to capture the physical world can also capture other images that may potentially violate user or by-stander privacy. Advances in deep learning to process images and videos have exacerbated such privacy risks. This paper presents a new technique to protect privacy in AR systems by combining the idea of visual saliency together with privacy-sensitive object detection. We show that our technique is able to provide additional context to a given image to better balance between privacy and overall usability of the system.
增强现实系统中显著性感知隐私保护
增强现实(AR)虚拟世界环境将物理世界和虚拟世界结合在一起。隐私是增强现实的一个主要问题,因为用于捕捉物理世界的相机也可以捕捉可能侵犯用户或旁观者隐私的其他图像。处理图像和视频的深度学习技术的进步加剧了这种隐私风险。本文提出了一种将视觉显著性思想与隐私敏感对象检测相结合的增强现实系统隐私保护新技术。我们表明,我们的技术能够为给定的图像提供额外的上下文,以更好地平衡隐私和系统的整体可用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信