Ensemble approach for time series analysis in demand forecasting: Ensemble learning

A. Akyuz, M. Uysal, B. Bulbul, M. Uysal
{"title":"Ensemble approach for time series analysis in demand forecasting: Ensemble learning","authors":"A. Akyuz, M. Uysal, B. Bulbul, M. Uysal","doi":"10.1109/INISTA.2017.8001123","DOIUrl":null,"url":null,"abstract":"Demand forecasting for replenishment is one of the main issue for retail industry in terms of optimizing stocks, minimizing costs and also for reducing stock out problem. Better forecasting for demands, means maximizing sales and result with more revenue and profit for retailers. An other critical result of the stock out problem is of course dissatisfied customers and customer churn effect to retailers as well. Customers, in general do not wish to buy an equivalent product from different brands instead of their routine selections. There are of course many parameters which affect very seriously forecasting accuracy of consumer demands. For instance; seasonality, promotional effects, social events, new trends, unexpected crisis, terrorism, changes on weather conditions, commercial behavior of competitors at the market etc. In this study, new heuristic approach for ensemble methodology has been proved. It has been implemented in SOK Market. It is one of Turkey's hard discount retail chain with 4000 stores and replenishes 1500 SKUs to stores via 22 regional distribution centers. The results of this approach and how to take benefits of the powerful common minded demand forecasting in time series forecasting analysis have been showed.","PeriodicalId":314687,"journal":{"name":"2017 IEEE International Conference on INnovations in Intelligent SysTems and Applications (INISTA)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on INnovations in Intelligent SysTems and Applications (INISTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INISTA.2017.8001123","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

Abstract

Demand forecasting for replenishment is one of the main issue for retail industry in terms of optimizing stocks, minimizing costs and also for reducing stock out problem. Better forecasting for demands, means maximizing sales and result with more revenue and profit for retailers. An other critical result of the stock out problem is of course dissatisfied customers and customer churn effect to retailers as well. Customers, in general do not wish to buy an equivalent product from different brands instead of their routine selections. There are of course many parameters which affect very seriously forecasting accuracy of consumer demands. For instance; seasonality, promotional effects, social events, new trends, unexpected crisis, terrorism, changes on weather conditions, commercial behavior of competitors at the market etc. In this study, new heuristic approach for ensemble methodology has been proved. It has been implemented in SOK Market. It is one of Turkey's hard discount retail chain with 4000 stores and replenishes 1500 SKUs to stores via 22 regional distribution centers. The results of this approach and how to take benefits of the powerful common minded demand forecasting in time series forecasting analysis have been showed.
需求预测中时间序列分析的集成方法:集成学习
需求预测是零售业优化库存、降低成本和减少缺货问题的主要问题之一。更好地预测需求,意味着最大限度地提高销售额,从而为零售商带来更多的收入和利润。缺货问题的另一个重要后果当然是不满意的顾客和顾客流失对零售商的影响。消费者一般不希望购买不同品牌的相同产品,而不是他们的常规选择。当然,有许多参数会严重影响消费者需求预测的准确性。例如;季节性因素、促销效果、社会事件、新趋势、意外危机、恐怖主义、天气变化、市场竞争对手的商业行为等。本研究证明了一种新的启发式集成方法。它已在SOK市场实施。它是土耳其的硬折扣零售连锁店之一,拥有4000家门店,并通过22个区域配送中心向门店补充1500个sku。最后给出了该方法的结果,并说明了在时间序列预测分析中如何利用通用需求预测的强大优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信