Ensemble Learning Approach on Indonesian Fake News Classification

H. Al-Ash, Mutia Fadhila Putri, P. Mursanto, A. Bustamam
{"title":"Ensemble Learning Approach on Indonesian Fake News Classification","authors":"H. Al-Ash, Mutia Fadhila Putri, P. Mursanto, A. Bustamam","doi":"10.1109/ICICoS48119.2019.8982409","DOIUrl":null,"url":null,"abstract":"The news is information about a recently changed situation or a recent event. Serving as popular media information the internet has the power spread the news not only real news but fake news as well. We propose an ensemble learning approach on Indonesian fake news in order to separate fake news from the real one and to tackle imbalanced data problem which we face on the given dataset. Our experiment result shows that random forest classifier as the ensemble classifier which obtained 0.98 f1-score is superior to multinomial naive bayes and support vector machine as non-ensemble classifiers which achieve 0.43 and 0.74 f1-score respectively across 660 evaluation documents. We also compare our result against other research that using the same data and our approach achieved better results.","PeriodicalId":105407,"journal":{"name":"2019 3rd International Conference on Informatics and Computational Sciences (ICICoS)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 3rd International Conference on Informatics and Computational Sciences (ICICoS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICoS48119.2019.8982409","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

Abstract

The news is information about a recently changed situation or a recent event. Serving as popular media information the internet has the power spread the news not only real news but fake news as well. We propose an ensemble learning approach on Indonesian fake news in order to separate fake news from the real one and to tackle imbalanced data problem which we face on the given dataset. Our experiment result shows that random forest classifier as the ensemble classifier which obtained 0.98 f1-score is superior to multinomial naive bayes and support vector machine as non-ensemble classifiers which achieve 0.43 and 0.74 f1-score respectively across 660 evaluation documents. We also compare our result against other research that using the same data and our approach achieved better results.
印尼假新闻分类的集成学习方法
新闻是关于最近发生变化的情况或事件的信息。作为大众媒体信息,互联网不仅有传播真实新闻的能力,也有传播假新闻的能力。我们提出了一种印度尼西亚假新闻的集成学习方法,以便将假新闻与真实新闻分开,并解决我们在给定数据集上面临的数据不平衡问题。实验结果表明,随机森林分类器作为集成分类器获得0.98 f1-score,优于多项朴素贝叶斯和支持向量机作为非集成分类器,在660个评价文档中分别获得0.43和0.74 f1-score。我们还将我们的结果与使用相同数据和我们的方法获得更好结果的其他研究进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信