Distributed evolutionary algorithms with adaptive migration period

Karel Osorio, Gabriel Luque, E. Alba
{"title":"Distributed evolutionary algorithms with adaptive migration period","authors":"Karel Osorio, Gabriel Luque, E. Alba","doi":"10.1109/ISDA.2011.6121665","DOIUrl":null,"url":null,"abstract":"In this work we use mathematical models, based on the study of the dynamics of the distributed evolutionary algorithms (dEA), to design self adaptive migration schedule for dEAs. We test our technique on two different problems: MAXSAT (a variant of the satisfiability problem), and a large scale problem, namely the radio network design problem. Its results are compared against the best results produced by distributed configurations with traditional tuning (constant preset migration schedules). Our experiments show that the technique produces results close to the best results obtained with fixed schedules while reducing the heavy cost of the parameter tuning.","PeriodicalId":433207,"journal":{"name":"2011 11th International Conference on Intelligent Systems Design and Applications","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 11th International Conference on Intelligent Systems Design and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISDA.2011.6121665","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

In this work we use mathematical models, based on the study of the dynamics of the distributed evolutionary algorithms (dEA), to design self adaptive migration schedule for dEAs. We test our technique on two different problems: MAXSAT (a variant of the satisfiability problem), and a large scale problem, namely the radio network design problem. Its results are compared against the best results produced by distributed configurations with traditional tuning (constant preset migration schedules). Our experiments show that the technique produces results close to the best results obtained with fixed schedules while reducing the heavy cost of the parameter tuning.
具有自适应迁移周期的分布式进化算法
本文在研究分布式进化算法(dEA)动力学的基础上,利用数学模型设计了分布式进化算法的自适应迁移计划。我们在两个不同的问题上测试了我们的技术:MAXSAT(可满意度问题的一种变体)和一个大规模问题,即无线网络设计问题。将其结果与具有传统调优(恒定预设迁移计划)的分布式配置产生的最佳结果进行比较。我们的实验表明,该技术产生的结果接近于固定时间表获得的最佳结果,同时减少了参数调优的沉重成本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信