Performance Evaluation and Analysis of Deep Learning Frameworks

Xiaoyan Xie, Wanqi He, Yun Zhu, Hao Xu
{"title":"Performance Evaluation and Analysis of Deep Learning Frameworks","authors":"Xiaoyan Xie, Wanqi He, Yun Zhu, Hao Xu","doi":"10.1145/3573942.3573948","DOIUrl":null,"url":null,"abstract":"The rapid development of deep learning has contributed to the increasing number of open-source deep learning frameworks, and in practice, benchmarking deep learning frameworks to effectively understand the performance characteristics of these frameworks and make choices becomes a challenge. Based on this, this paper uses three types of neural networks (convolutional neural networks, recurrent neural networks, and vision transformer models) to conduct extensive experimental evaluation and analysis of three popular deep learning frameworks, TensorFlow, PyTorch, and PaddlePaddle. Experiments are mainly conducted in CPU and GPU environments using different datasets, and performance parameters such as accuracy, training time, inference time, hardware utilization and other non-performance factors are considered. Finally, the performance characteristics, advantages and disadvantages of different frameworks are analyzed based on the above indexes, which provides theoretical guidance for users to choose.","PeriodicalId":103293,"journal":{"name":"Proceedings of the 2022 5th International Conference on Artificial Intelligence and Pattern Recognition","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2022 5th International Conference on Artificial Intelligence and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3573942.3573948","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The rapid development of deep learning has contributed to the increasing number of open-source deep learning frameworks, and in practice, benchmarking deep learning frameworks to effectively understand the performance characteristics of these frameworks and make choices becomes a challenge. Based on this, this paper uses three types of neural networks (convolutional neural networks, recurrent neural networks, and vision transformer models) to conduct extensive experimental evaluation and analysis of three popular deep learning frameworks, TensorFlow, PyTorch, and PaddlePaddle. Experiments are mainly conducted in CPU and GPU environments using different datasets, and performance parameters such as accuracy, training time, inference time, hardware utilization and other non-performance factors are considered. Finally, the performance characteristics, advantages and disadvantages of different frameworks are analyzed based on the above indexes, which provides theoretical guidance for users to choose.
深度学习框架的性能评估与分析
深度学习的快速发展催生了越来越多的开源深度学习框架,在实践中,对深度学习框架进行基准测试以有效地了解这些框架的性能特征并做出选择成为一个挑战。基于此,本文使用三种类型的神经网络(卷积神经网络、递归神经网络和视觉变形模型)对TensorFlow、PyTorch和PaddlePaddle这三种流行的深度学习框架进行了广泛的实验评估和分析。实验主要在CPU和GPU环境下使用不同的数据集进行,并考虑准确率、训练时间、推理时间、硬件利用率等性能参数等非性能因素。最后,根据上述指标分析了不同框架的性能特点、优缺点,为用户选择提供理论指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信