Arrhythmia heart beats classification using mahalanobis Generalized Learning Vector Quantization (Mahalanobis GLVQ)

E. Imah, I. M. A. Setiawan, A. Febrian, W. Jatmiko
{"title":"Arrhythmia heart beats classification using mahalanobis Generalized Learning Vector Quantization (Mahalanobis GLVQ)","authors":"E. Imah, I. M. A. Setiawan, A. Febrian, W. Jatmiko","doi":"10.1109/MHS.2011.6102208","DOIUrl":null,"url":null,"abstract":"Automatic heart beats classification has attracted much interest for research recently and we are interested to determine the type of arrhythmia from electrocardiogram (ECG) signal automatically. In this study we modified supervised Generalized Learning Vector Quantization (GLVQ) A. Sato with inject the mahalanobis distance to GLVQ in order to develop a robust algorithm that we said Mahalanobis GLVQ. The overall classification system is comprised of three components including data pre-processing, feature extraction and classification. Data preprocessing related to how the initial data prepared, while for the feature extraction and selection, we using wavelet algorithm. The classification will be divided into two phases, at ones phase we will test the algorithm with clean data from outlier, and at second phase we use noisy data that contains outlier data. The ECG signals are obtained from MIT-BIH arrhythmia database. Accuracy of Mahalanobis GLVQ in our study is 92% for clean data test with 24 feature and 87% for GLVQ, its show that Mahalanobis GLVQ able to increasing accuracy of GLVQ. The result experiment of data test that contain outlier data, accuracy of Mahalanobis GLVQ in our study is 67% and accuracy or GLVQ is 65%.","PeriodicalId":286457,"journal":{"name":"2011 International Symposium on Micro-NanoMechatronics and Human Science","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Symposium on Micro-NanoMechatronics and Human Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MHS.2011.6102208","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Automatic heart beats classification has attracted much interest for research recently and we are interested to determine the type of arrhythmia from electrocardiogram (ECG) signal automatically. In this study we modified supervised Generalized Learning Vector Quantization (GLVQ) A. Sato with inject the mahalanobis distance to GLVQ in order to develop a robust algorithm that we said Mahalanobis GLVQ. The overall classification system is comprised of three components including data pre-processing, feature extraction and classification. Data preprocessing related to how the initial data prepared, while for the feature extraction and selection, we using wavelet algorithm. The classification will be divided into two phases, at ones phase we will test the algorithm with clean data from outlier, and at second phase we use noisy data that contains outlier data. The ECG signals are obtained from MIT-BIH arrhythmia database. Accuracy of Mahalanobis GLVQ in our study is 92% for clean data test with 24 feature and 87% for GLVQ, its show that Mahalanobis GLVQ able to increasing accuracy of GLVQ. The result experiment of data test that contain outlier data, accuracy of Mahalanobis GLVQ in our study is 67% and accuracy or GLVQ is 65%.
基于mahalanobis广义学习向量量化(mahalanobis GLVQ)的心律失常分类
心律自动分类是近年来研究的热点之一,如何从心电图信号中自动判断心律失常的类型是目前研究的热点。在本研究中,我们对监督广义学习向量量化(GLVQ) a . Sato进行了改进,将mahalanobis距离注入到GLVQ中,以开发一种鲁棒的算法,我们称之为mahalanobis GLVQ。整个分类系统由数据预处理、特征提取和分类三个部分组成。数据预处理涉及到如何准备初始数据,而对于特征提取和选择,我们使用小波算法。分类将分为两个阶段,在一个阶段,我们将使用来自离群值的干净数据来测试算法,在第二个阶段,我们使用包含离群值数据的噪声数据。心电信号来源于MIT-BIH心律失常数据库。在我们的研究中,Mahalanobis GLVQ在24个特征的干净数据测试中准确率为92%,在GLVQ中准确率为87%,这表明Mahalanobis GLVQ能够提高GLVQ的准确率。在包含离群数据的数据检验结果实验中,本研究马氏马氏体GLVQ的准确率为67%,GLVQ的准确率为65%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信