Highly Parallel Seedless Random Number Generation from Arbitrary Thread Schedule Reconstruction

Eryn Aguilar, Benjamin Lowe, J. Zhan, L. Gewali, Paul Y. Oh, Jevis Dancel, Deysaree Mamaud, Dorothy Pirosch, Farin Tavacoli, Felix Zhan, Robbie Pearce, Margaret Novack, Hokunani Keehu
{"title":"Highly Parallel Seedless Random Number Generation from Arbitrary Thread Schedule Reconstruction","authors":"Eryn Aguilar, Benjamin Lowe, J. Zhan, L. Gewali, Paul Y. Oh, Jevis Dancel, Deysaree Mamaud, Dorothy Pirosch, Farin Tavacoli, Felix Zhan, Robbie Pearce, Margaret Novack, Hokunani Keehu","doi":"10.1109/ICBK.2019.00009","DOIUrl":null,"url":null,"abstract":"Security is a universal concern across a multitude of sectors involved in the transfer and storage of computerized data. In the realm of cryptography, random number generators (RNGs) are integral to the creation of encryption keys that protect private data, and the production of uniform probability outcomes is a revenue source for certain enterprises (most notably the casino industry). Arbitrary thread schedule reconstruction of compare-and-swap operations is used to generate input traces for the Blum-Elias algorithm as a method for constructing random sequences, provided the compare-and-swap operations avoid cache locality. Threads accessing shared memory at the memory controller is a true random source which can be polled indirectly through our algorithm with unlimited parallelism. A theoretical and experimental analysis of the observation and reconstruction algorithm are considered. The quality of the random number generator is experimentally analyzed using two standard test suites, DieHarder and ENT, on three data sets.","PeriodicalId":383917,"journal":{"name":"2019 IEEE International Conference on Big Knowledge (ICBK)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Conference on Big Knowledge (ICBK)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICBK.2019.00009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Security is a universal concern across a multitude of sectors involved in the transfer and storage of computerized data. In the realm of cryptography, random number generators (RNGs) are integral to the creation of encryption keys that protect private data, and the production of uniform probability outcomes is a revenue source for certain enterprises (most notably the casino industry). Arbitrary thread schedule reconstruction of compare-and-swap operations is used to generate input traces for the Blum-Elias algorithm as a method for constructing random sequences, provided the compare-and-swap operations avoid cache locality. Threads accessing shared memory at the memory controller is a true random source which can be polled indirectly through our algorithm with unlimited parallelism. A theoretical and experimental analysis of the observation and reconstruction algorithm are considered. The quality of the random number generator is experimentally analyzed using two standard test suites, DieHarder and ENT, on three data sets.
基于任意线程调度重构的高度并行无籽随机数生成
安全是涉及计算机数据传输和存储的众多部门普遍关注的问题。在密码学领域,随机数生成器(rng)对于创建保护私人数据的加密密钥是不可或缺的,并且产生均匀概率结果是某些企业(最明显的是赌场行业)的收入来源。如果比较和交换操作避免缓存局域性,则使用比较和交换操作的任意线程调度重构来为Blum-Elias算法生成输入跟踪,作为构造随机序列的方法。在内存控制器上访问共享内存的线程是一个真正的随机源,可以通过无限并行的算法间接轮询。对观测和重建算法进行了理论和实验分析。在三个数据集上,使用DieHarder和ENT两个标准测试套件对随机数生成器的质量进行了实验分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信