Eryn Aguilar, Benjamin Lowe, J. Zhan, L. Gewali, Paul Y. Oh, Jevis Dancel, Deysaree Mamaud, Dorothy Pirosch, Farin Tavacoli, Felix Zhan, Robbie Pearce, Margaret Novack, Hokunani Keehu
{"title":"Highly Parallel Seedless Random Number Generation from Arbitrary Thread Schedule Reconstruction","authors":"Eryn Aguilar, Benjamin Lowe, J. Zhan, L. Gewali, Paul Y. Oh, Jevis Dancel, Deysaree Mamaud, Dorothy Pirosch, Farin Tavacoli, Felix Zhan, Robbie Pearce, Margaret Novack, Hokunani Keehu","doi":"10.1109/ICBK.2019.00009","DOIUrl":null,"url":null,"abstract":"Security is a universal concern across a multitude of sectors involved in the transfer and storage of computerized data. In the realm of cryptography, random number generators (RNGs) are integral to the creation of encryption keys that protect private data, and the production of uniform probability outcomes is a revenue source for certain enterprises (most notably the casino industry). Arbitrary thread schedule reconstruction of compare-and-swap operations is used to generate input traces for the Blum-Elias algorithm as a method for constructing random sequences, provided the compare-and-swap operations avoid cache locality. Threads accessing shared memory at the memory controller is a true random source which can be polled indirectly through our algorithm with unlimited parallelism. A theoretical and experimental analysis of the observation and reconstruction algorithm are considered. The quality of the random number generator is experimentally analyzed using two standard test suites, DieHarder and ENT, on three data sets.","PeriodicalId":383917,"journal":{"name":"2019 IEEE International Conference on Big Knowledge (ICBK)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Conference on Big Knowledge (ICBK)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICBK.2019.00009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9
Abstract
Security is a universal concern across a multitude of sectors involved in the transfer and storage of computerized data. In the realm of cryptography, random number generators (RNGs) are integral to the creation of encryption keys that protect private data, and the production of uniform probability outcomes is a revenue source for certain enterprises (most notably the casino industry). Arbitrary thread schedule reconstruction of compare-and-swap operations is used to generate input traces for the Blum-Elias algorithm as a method for constructing random sequences, provided the compare-and-swap operations avoid cache locality. Threads accessing shared memory at the memory controller is a true random source which can be polled indirectly through our algorithm with unlimited parallelism. A theoretical and experimental analysis of the observation and reconstruction algorithm are considered. The quality of the random number generator is experimentally analyzed using two standard test suites, DieHarder and ENT, on three data sets.