DiffuScope: inferring post-specific diffusion network

Md Rashidul Hasan, Dheeman Saha, Farhan Asif Chowdhury, J. Degnan, A. Mueen
{"title":"DiffuScope: inferring post-specific diffusion network","authors":"Md Rashidul Hasan, Dheeman Saha, Farhan Asif Chowdhury, J. Degnan, A. Mueen","doi":"10.1145/3487351.3490967","DOIUrl":null,"url":null,"abstract":"Post-specific diffusion network elucidates the who-saw-from-whom paths of a post on social media. A diffusion network for a specific post can reveal trustworthy and/or incentivized connections among users. Unfortunately, such a network is not observable from available information from social media platforms; hence an inference mechanism is needed. In this paper, we propose an algorithm to infer the diffusion network of a post, exploiting temporal, textual, and network modalities. The proposed algorithm identifies the maximum likely diffusion network using a conditional point process. The algorithm can scale up to thousands of shares from a single post and can be implemented as a real-time analytical tool. We analyze inferred diffusion networks and show discernible differences in information diffusion within various user groups (i.e. verified vs. unverified, conservative vs. liberal) and across local communities (political, entrepreneurial, etc.). We discover differences in inferred networks showing disproportionate presence of automated bots, a potential way to measure the true impact of a post.","PeriodicalId":320904,"journal":{"name":"Proceedings of the 2021 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2021 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3487351.3490967","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Post-specific diffusion network elucidates the who-saw-from-whom paths of a post on social media. A diffusion network for a specific post can reveal trustworthy and/or incentivized connections among users. Unfortunately, such a network is not observable from available information from social media platforms; hence an inference mechanism is needed. In this paper, we propose an algorithm to infer the diffusion network of a post, exploiting temporal, textual, and network modalities. The proposed algorithm identifies the maximum likely diffusion network using a conditional point process. The algorithm can scale up to thousands of shares from a single post and can be implemented as a real-time analytical tool. We analyze inferred diffusion networks and show discernible differences in information diffusion within various user groups (i.e. verified vs. unverified, conservative vs. liberal) and across local communities (political, entrepreneurial, etc.). We discover differences in inferred networks showing disproportionate presence of automated bots, a potential way to measure the true impact of a post.
扩散镜:推断特异后扩散网络
特定后扩散网络阐明了社交媒体上帖子的“谁锯谁”路径。特定帖子的扩散网络可以揭示用户之间值得信赖和/或受激励的联系。不幸的是,从社交媒体平台上的可用信息中无法观察到这样一个网络;因此需要一种推理机制。在本文中,我们提出了一种算法来推断帖子的扩散网络,利用时间,文本和网络模式。该算法采用条件点过程识别最大似然扩散网络。该算法可以从一个帖子扩展到数千个分享,并可以作为实时分析工具实现。我们分析了推断的扩散网络,并显示了不同用户群体(即验证vs.未经验证,保守vs.自由)和当地社区(政治,企业等)之间信息扩散的明显差异。我们发现了推断网络的差异,显示出自动化机器人不成比例的存在,这是衡量帖子真实影响的潜在方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信