A Least Squares approach to user profiling in pool mix-based anonymous communication systems

F. Pérez-González, C. Troncoso
{"title":"A Least Squares approach to user profiling in pool mix-based anonymous communication systems","authors":"F. Pérez-González, C. Troncoso","doi":"10.1109/WIFS.2012.6412635","DOIUrl":null,"url":null,"abstract":"Deployed high-latency anonymous communication systems conceal communication patterns using pool mixes as building blocks. These mixes are known to be vulnerable to Disclosure Attacks that uncover persistent relationships between users. In this paper we study the performance of the Least Squares Disclosure Attack (LSDA), an approach to disclosure rooted in Maximum Likelihood parameter estimation that recovers user profiles with greater accuracy than previous work. We derive analytical expressions that characterize the profiling error of the LSDA with respect to the system parameters for a threshold binomial pool mix and validate them empirically. Moreover, we show that our approach is easily adaptable to attack diverse pool mixing strategies.","PeriodicalId":396789,"journal":{"name":"2012 IEEE International Workshop on Information Forensics and Security (WIFS)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Workshop on Information Forensics and Security (WIFS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WIFS.2012.6412635","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Deployed high-latency anonymous communication systems conceal communication patterns using pool mixes as building blocks. These mixes are known to be vulnerable to Disclosure Attacks that uncover persistent relationships between users. In this paper we study the performance of the Least Squares Disclosure Attack (LSDA), an approach to disclosure rooted in Maximum Likelihood parameter estimation that recovers user profiles with greater accuracy than previous work. We derive analytical expressions that characterize the profiling error of the LSDA with respect to the system parameters for a threshold binomial pool mix and validate them empirically. Moreover, we show that our approach is easily adaptable to attack diverse pool mixing strategies.
基于池混合的匿名通信系统中用户分析的最小二乘方法
部署的高延迟匿名通信系统使用池混合作为构建块来隐藏通信模式。众所周知,这些组合很容易受到揭露用户之间持久关系的披露攻击。在本文中,我们研究了最小二乘披露攻击(LSDA)的性能,这是一种基于最大似然参数估计的披露方法,比以前的工作更准确地恢复用户配置文件。我们导出了描述LSDA相对于阈值二项池混合的系统参数的分析误差的解析表达式,并对它们进行了经验验证。此外,我们表明我们的方法很容易适应攻击不同的池混合策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信