Light Inextensible Strings (Thread) Under Tension in the Schwarzschild Geometry

R. Hankin
{"title":"Light Inextensible Strings (Thread) Under Tension in the Schwarzschild Geometry","authors":"R. Hankin","doi":"10.1142/s2661339521500050","DOIUrl":null,"url":null,"abstract":"Light inextensible string under tension is a stalwart feature of elementary physics. Here I show how considering such a string in the vicinity of a black hole, with the help of computer algebra systems, can generate insight into the Schwarzschild geometry in the context of an undergraduate homework problem. Light taut strings minimize their proper length, given by integrating the spatial component of the Schwarzschild metric along the string. The path itself is given by straightforward numerical solution to the Euler–Lagrange equations. If the string is entirely outside the event horizon, its closest approach to the singularity is tangential. At this point the string is visibly curved, surely a memorable and informative insight. The geometry of the Schwarzschild metric induces some interesting nonlocal phenomena: if the distance of closest approach is less than about [Formula: see text], the string self-intersects, even though it is everywhere under tension. Light taut strings furnish a third interpretation of the concept “straight line”, the other two being null geodesics and free-fall world lines. All the software used is available under the GPL.1","PeriodicalId":112108,"journal":{"name":"The Physics Educator","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Physics Educator","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s2661339521500050","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Light inextensible string under tension is a stalwart feature of elementary physics. Here I show how considering such a string in the vicinity of a black hole, with the help of computer algebra systems, can generate insight into the Schwarzschild geometry in the context of an undergraduate homework problem. Light taut strings minimize their proper length, given by integrating the spatial component of the Schwarzschild metric along the string. The path itself is given by straightforward numerical solution to the Euler–Lagrange equations. If the string is entirely outside the event horizon, its closest approach to the singularity is tangential. At this point the string is visibly curved, surely a memorable and informative insight. The geometry of the Schwarzschild metric induces some interesting nonlocal phenomena: if the distance of closest approach is less than about [Formula: see text], the string self-intersects, even though it is everywhere under tension. Light taut strings furnish a third interpretation of the concept “straight line”, the other two being null geodesics and free-fall world lines. All the software used is available under the GPL.1
史瓦西几何中张力下的光不可扩展弦(线)
张力作用下的光不可伸缩弦是基础物理学的一个重要特征。在这里,我展示了如何在计算机代数系统的帮助下,考虑黑洞附近的这样一个弦,可以在本科作业问题的背景下产生对史瓦西几何的见解。通过沿弦积分史瓦西度规的空间分量,使轻拉弦的固有长度最小化。路径本身是由欧拉-拉格朗日方程的直接数值解给出的。如果弦完全在视界之外,它离奇点最近的距离是切向的。在这一点上,弦是明显弯曲的,肯定是一个令人难忘的和信息丰富的洞察力。史瓦西度规的几何结构引发了一些有趣的非局域现象:如果最接近的距离小于约[公式:见文本],弦自相交,即使它处处处于张力之下。轻绷紧的弦提供了“直线”概念的第三种解释,另外两种是零测地线和自由落体世界线。所有使用的软件都可以在gpl 1下获得
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信