Efstathios Sotiriou-Xanthopoulos, S. Xydis, K. Siozios, G. Economakos, D. Soudris
{"title":"Effective Platform-Level Exploration for Heterogeneous Multicores Exploiting Simulation-Induced Slacks","authors":"Efstathios Sotiriou-Xanthopoulos, S. Xydis, K. Siozios, G. Economakos, D. Soudris","doi":"10.1145/2556863.2556864","DOIUrl":null,"url":null,"abstract":"Heterogeneous Multi-Processor Systems-on-Chip (MPSoC) exhibit increased design complexity due to numerous architectural parameters and hardware/software partitioning schemes. Automated Design Space Exploration (DSE) becomes an essential design procedure to discover optimized solutions in a reasonable time. For high-quality DSE, the accurate solution evaluation is a strong requirement. To this direction, High-Level Synthesis (HLS) can be used for the characterization of the design solutions. In this paper, we propose (a) a platform design methodology that exploits simulation-induced slacks generated by avoiding simulation re-initializations and exploits the gained time for HLS, and (b) a DSE tool-flow which takes into account multiple HW/SW partitioning schemes and intelligently schedules system evaluations. Experimental results show that the proposed methodology achieves 17% simulation improvements together with 77% higher accuracy, in comparison to a typical exploration approach.","PeriodicalId":210814,"journal":{"name":"PARMA-DITAM '14","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PARMA-DITAM '14","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2556863.2556864","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8
Abstract
Heterogeneous Multi-Processor Systems-on-Chip (MPSoC) exhibit increased design complexity due to numerous architectural parameters and hardware/software partitioning schemes. Automated Design Space Exploration (DSE) becomes an essential design procedure to discover optimized solutions in a reasonable time. For high-quality DSE, the accurate solution evaluation is a strong requirement. To this direction, High-Level Synthesis (HLS) can be used for the characterization of the design solutions. In this paper, we propose (a) a platform design methodology that exploits simulation-induced slacks generated by avoiding simulation re-initializations and exploits the gained time for HLS, and (b) a DSE tool-flow which takes into account multiple HW/SW partitioning schemes and intelligently schedules system evaluations. Experimental results show that the proposed methodology achieves 17% simulation improvements together with 77% higher accuracy, in comparison to a typical exploration approach.