Decentralised data fusion with exponentials of polynomials

Bradley Tonkes, A. Blair
{"title":"Decentralised data fusion with exponentials of polynomials","authors":"Bradley Tonkes, A. Blair","doi":"10.1109/IROS.2007.4399072","DOIUrl":null,"url":null,"abstract":"We demonstrate applicability of a general class of multivariate probability density functions of the form e-P(x), where P(x) is an elliptic polynomial, to decentralised data fusion tasks. In particular, we derive an extension to the covariance Intersect algorithm for this class of distributions and demonstrate the necessary operations - diffusion, multiplication and linear transformation - for Bayesian operations. A simulated target tracking application demonstrates the use of these operations in a decentralised scenario, employing range-only sensing to show their generality beyond Gaussian representations.","PeriodicalId":227148,"journal":{"name":"2007 IEEE/RSJ International Conference on Intelligent Robots and Systems","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE/RSJ International Conference on Intelligent Robots and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IROS.2007.4399072","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

We demonstrate applicability of a general class of multivariate probability density functions of the form e-P(x), where P(x) is an elliptic polynomial, to decentralised data fusion tasks. In particular, we derive an extension to the covariance Intersect algorithm for this class of distributions and demonstrate the necessary operations - diffusion, multiplication and linear transformation - for Bayesian operations. A simulated target tracking application demonstrates the use of these operations in a decentralised scenario, employing range-only sensing to show their generality beyond Gaussian representations.
分散数据融合与多项式指数
我们证明了e-P(x)形式的一般多变量概率密度函数(其中P(x)是一个椭圆多项式)对分散数据融合任务的适用性。特别地,我们推导了这类分布的协方差相交算法的扩展,并演示了贝叶斯操作的必要操作-扩散,乘法和线性变换。模拟目标跟踪应用程序演示了这些操作在分散场景中的使用,采用仅距离传感来显示其超越高斯表示的通用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信