Trace and Detect Adversarial Attacks on CNNs Using Feature Response Maps

Mohammadreza Amirian, F. Schwenker, Thilo Stadelmann
{"title":"Trace and Detect Adversarial Attacks on CNNs Using Feature Response Maps","authors":"Mohammadreza Amirian, F. Schwenker, Thilo Stadelmann","doi":"10.21256/zhaw-3863","DOIUrl":null,"url":null,"abstract":"The existence of adversarial attacks on convolutional neural networks (CNN) questions the fitness of such models for serious applications. The attacks manipulate an input image such that misclassification is evoked while still looking normal to a human observer—they are thus not easily detectable. In a different context, backpropagated activations of CNN hidden layers—“feature responses” to a given input—have been helpful to visualize for a human “debugger” what the CNN “looks at” while computing its output. In this work, we propose a novel detection method for adversarial examples to prevent attacks. We do so by tracking adversarial perturbations in feature responses, allowing for automatic detection using average local spatial entropy. The method does not alter the original network architecture and is fully human-interpretable. Experiments confirm the validity of our approach for state-of-the-art attacks on large-scale models trained on ImageNet.","PeriodicalId":368838,"journal":{"name":"IAPR International Workshop on Artificial Neural Networks in Pattern Recognition","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IAPR International Workshop on Artificial Neural Networks in Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21256/zhaw-3863","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

The existence of adversarial attacks on convolutional neural networks (CNN) questions the fitness of such models for serious applications. The attacks manipulate an input image such that misclassification is evoked while still looking normal to a human observer—they are thus not easily detectable. In a different context, backpropagated activations of CNN hidden layers—“feature responses” to a given input—have been helpful to visualize for a human “debugger” what the CNN “looks at” while computing its output. In this work, we propose a novel detection method for adversarial examples to prevent attacks. We do so by tracking adversarial perturbations in feature responses, allowing for automatic detection using average local spatial entropy. The method does not alter the original network architecture and is fully human-interpretable. Experiments confirm the validity of our approach for state-of-the-art attacks on large-scale models trained on ImageNet.
利用特征响应图跟踪和检测对cnn的对抗性攻击
针对卷积神经网络(CNN)的对抗性攻击的存在质疑了这种模型在严肃应用中的适用性。这种攻击会对输入图像进行操作,这样就会引起错误分类,而对人类观察者来说仍然是正常的——因此它们不容易被发现。在另一种情况下,CNN隐藏层的反向传播激活——对给定输入的“特征响应”——有助于人类“调试器”可视化CNN在计算输出时“看到”的内容。在这项工作中,我们提出了一种新的对抗性样本检测方法来防止攻击。我们通过跟踪特征响应中的对抗性扰动来做到这一点,允许使用平均局部空间熵进行自动检测。该方法不改变原有的网络体系结构,并且完全可人为解释。实验证实了我们的方法对于在ImageNet上训练的大规模模型的最先进攻击的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信